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a b s t r a c t

This study proposes a novel artificial intelligence (AI) model to estimate the shear strength of reinforced-
concrete (RC) deep beams. The proposed evolutionary multivariate adaptive regression splines (EMARS)
model is a hybrid of multivariate adaptive regression splines (MARS) and artificial bee colony (ABC).
In EMARS, MARS addresses learning and curve fitting and ABC implements optimization to determine
the optimal parameter settings with minimal estimation errors. The proposed model was constructed
using 106 experimental datasets from the literature. EMARS performance was compared with three other
data-mining techniques, including back-propagation neural network (BPNN), radial basis function neural
network (RBFNN), and support vector machine (SVM). EMARS estimation accuracy was benchmarked
against four prevalent mathematical methods, including ACI-318 (2011), CSA, CEB-FIP MC90, and Tang’s
Method. Benchmark results identified EMARS as the best model and, thus, an efficient alternative
approach to estimating RC deep beam shear strength.

& 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Because shear stress is the primary failure mode of reinforce-
concrete (RC) deep beams (Mansour et al., 2004), the behavior and
design of these beams in shear mechanism is an area of concern
for structural engineers. Furthermore, because concrete structures
are fragile, shear failure in the plain concrete members of these
structures may cause sudden structural collapse. Avoiding high-
risk failure modes is thus a priority objective for civil engineers
(Amani and Moeini, 2012). Based on the above, the ability to
accurately estimate the shear strength of RC deep beams is critical
to the safe and widespread application of these beams in con-
struction projects.

Technical manuals published by the American Concrete Insti-
tute (ACI) (ACI-318, 2008), Canadian Standard Association (CSA)
(CSA, 1994), and Construction Institute Research and Information
Association (CIRIA Guide 2) (CIRIA-Guide2, 1977) provide standar-
dized methods for calculating the ultimate shear strength of RC
deep beams. However, calculated values are conservative in light
of experimental tests (Pal and Deswal, 2011; Tan et al., 1997; Teng
et al., 1998) due to the large number of influencing parameters and
the potentially nonlinear relationships between these parameters
and shear strength. The inherent complexity of these relationships

limits designer ability to assess shear strength and has made it
difficult to establish a mathematical model able to accurately esti-
mate shear strength (Amani and Moeini, 2012). Thus, there is no
analytical model that accurately estimates RC deep beam shear
strength (Appa and Sundaresan, 2012).

The artificial intelligence (AI) inference model is a potentially
advantageous alternative approach to RC deep beam shear strength
estimation. AI simulates the human inference processes, inferring
new facts from previously acquired information and changing adap-
tively in response to changes in historical data. Tsai (2011) stated that
AI technique delivered a high level of strength estimation accuracy.
The present study thus employs multivariate adaptive regression
spline (MARS) to construct a proposed model able to accurately
estimate the shear strength of RC deep beams and account for the
effects of many of the parameters deemed by researchers to impact
on RC deep beam shear strength (Mansour et al., 2004).

MARS is a nonlinear, non-parametric regression methodology
(Friedman, 1991). MARS’ greatest advantage is its ability to explore
the complex nonlinear relationships between a response variable
and predictor variables. Additionally, MARS has the ability to
determine the input parameters that impact significantly on the
response. MARS has been demonstrated particularly effective in
handling prediction problems and successfully employed in credit
scoring (Lee et al., 2006), computer wholesaling (Lu et al., 2012),
paper manufacturing (García et al., 2012), public water supply issues
(Vidoli, 2011), and engineering software (Zhou and Leung, 2007).
Many studies have further demonstrated the superiority of MARS
over other data techniques (Leathwick et al., 2006; Samui, 2012).
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However, it is surprising that MARS has not yet been applied to
problems in the field of structural engineering.

Building a MARS model requires users select tuning parameters
that include maximum number of basis functions Mmax, penalty
(i.e., smooth parameter) d and maximum interaction between
variables Imax. These parameters are considered as important
features in controlling MARS model complexity and generalization
(Andalib and Atry, 2009). Therefore, obtaining an optimal MARS
parameter set is crucial to achieving MARS prediction accuracy.
Friedman’s prior parameter selection suggestions have large value
ranges, with actual selected values dependent on the dataset at
hand (Friedman, 1991).

To overcome this drawback of MARS, our paper used the ABC
(Karaboga, 2005) algorithm as a search engine to determine
optimal MARS parameter values. ABC was introduced by Karaboga
in 2005 and is a swarm intelligence-based optimization algorithm
inspired by honeybee foraging behavior. Its relatively small num-
ber of control parameters makes ABC flexible and easy to execute
for novice users (Li et al., 2011). Various works have demonstrated
the comparative superiority of ABC over other algorithms in
identifying optimal solutions (Karaboga and Akay, 2009; Li et al.,
2010). ABC is also a reliable tool when paired with other data
mining techniques (Hong, 2011). ABC is thus a potentially suitable
search engine for identifying suitable MARS parameters such as
Mmax, d and Imax.

The objective of this research was to develop and test the
evolutionary multivariate adaptive regression splines (EMARS).
The authors created EMARS by fusing MARS and ABC in a manner
that incorporated the strengths and avoided the weaknesses of
each technique. This newly proposed model operates automati-
cally without human intervention and accurately estimates the
shear strength of RC deep beams under various parameter set-
tings. This study then compared the performance of EMARS
against three other benchmark data mining techniques, including
back-propagation neural network (BPNN), radial basis function
neural network (RBFNN), and support vector machine (SVM).

The remainder of this paper is organized as follows: the second
section reviews related research works; the third introduces the
EMARS model; the fourth describes the data collection process;
the fifth validates the EMARS model and compares simulations
results; and the last presents conclusions.

2. Literature review

2.1. Previous works

There is increasing research interest in applying AI techniques
to problems related to RC deep beam shear strength. Numerous
studies have proposed approaches to modeling the shear strength
of RC deep beams and analyzing the influence of input parameters.
Goh (1995) first used ANN to predict the ultimate shear strength of
RC deep beams with six input parameters. The author stated that
ANN could provide predicted values close to test values. Sanad and
Saka (2001) tested ANN’s effectiveness in predicting the ultimate
shear strength of RC deep beams with output response derived
using nine input parameters. The study demonstrated that ANN
outperformed several mathematical approaches, including ACI
(ACI-318, 1995), Strut-and-Tie (Siao, 1993), and Mau and Hsu’s
method (Mau and Hsu, 1989).

Yang et al. (2007) also studied ANN’s ability to predict RC deep
beam shear capacity. Ashour et al. (2003) used genetic programming
to model RC deep beam shear strength and derived mathematical
formulae that indicated the shear-span-to-effective-beam-depth
ratio and main-longitudinal-bottom-reinforcement ratio as the most
significant parameters. Pal and Deswal (2011) recently applied

the SVM to model RC deep beam shear strength using nine input
parameters. Study results found SVM superior to ANN and ACI
(ACI-318, 2004).

Previous studies have generally applied similar ANN and GP
techniques with only minor modifications and the inclusion of
some traditional techniques. This may represent a shortcoming of
applying AI to the shear strength problem. The significant disad-
vantage of ANN is the need to select a large number of controlling
parameters to construct the network, e.g., number of hidden layers,
number of neurons in hidden layers, learning rate, and momentum
(Samarasinghe, 2006).

This means that the ANN training process must be obtained via
a gradient descent algorithm on the error space, which may be
very complex and contain many local solutions that may prevent
an ANN model from converging on an optimal solution (Kiranyaz
et al., 2009). Additionally, ANN does not represent an explicit
relationship between input and output parameters or even indi-
cate the relative importance of each input variable.

Although Pal and Deswal (2011) assessed SVM as superior to
ANN in estimating RC deep beam shear strength, SVM does not
help construct a mathematical formulae for shear strength. In
other words, SVM cannot indicate the relative importance of each
input variable either. As for GP, this method does not perform
a proper numerical estimation of model parameters (constants/
coefficients). This tends to yield functions that grow in length
during the evolutionary search phase (Davidson et al., 2003),
potentially creating a final model that is impractically large and
difficult to interpret. Similar to ANN and SVM, GP also does not
indicate the relative importance of variables.

2.2. Multivariate adaptive regression splines

MARS was first proposed by Friedman (1991) as a flexible
procedure to organize relationships that are nearly additive or involve
interactions with fewer variables. MARS makes no assumptions about
the underlying functional relationship between dependent and inde-
pendent variables in order to estimate the general functions of high-
dimensional arguments given sparse data (Friedman, 1991; Samui,
2012). One further advantage of MARS is its ability to estimate
the contributions of basis functions so that the additive and interactive
effects of predictors are allowed to determine the response variable.

MARS is established by fitting a basis function (term) to distinct
independent variable intervals. In general, splines (also called piece-
wise polynomials) have pieces that connect smoothly together. The
interface points between pieces are called knots, denoted as t. MARS
uses two-sided truncated power functions as spline basis functions,
described in Eqs. (1) and (2). Fig. 1 (q¼ 1; t ¼ 0:5) provides an
illustration
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Fig. 1. Basis function.
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