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a b s t r a c t

This paper considers the problem of segmenting the endocardium in 2-D short-axis echocardiographic
images from rats by using the sparse representation of feature vectors over learned dictionaries during
classification. We highlight important aspects of the application of the theory of sparse representation
and dictionary learning to the problem of ultrasound image segmentation. Experiments were conducted
following two directions for the generation of dictionaries for myocardium and blood pool regions; by
manual extraction of image patches to build untrained dictionaries and by patch extraction followed by
training of dictionaries. The results obtained from different learned dictionaries are compared. During
classification of an image patch, instead of using features of the patch alone, features of neighboring
patches are combined.

& 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Advancements in ultrasound transducer design, improvements
in image resolution, noninvasive nature, usefulness for medical
diagnosis, portability as well as economy make segmentation of
ultrasound images a motivating challenge; however, ultrasound
data presents characteristics (such as speckle, non-homogeneities,
shadowing, low contrast, and signal dropout) that make its seg-
mentation a difficult task. Noble and Boukerroui (2006) provide an
extensive review of different ultrasound segmentation methods.

We consider the problem of segmenting the endocardium on
short-axis echocardiographic images by dividing an image in patches
(Kumar and Hebert, 2006), and classifying an image patch as belong-
ing to one of two classes or regions, myocardium tissue or blood pool.
This problem is approached using the promising research field of
dictionary learning, early addressed by Olshausen and Field (1997),
with the motivation that there are no reports of echocardiographic
image segmentation using the framework of dictionary learning. This
research field focuses on the development of algorithms to learn
dictionaries with elements, called atoms, so that a signal of interest can
be decomposed as a linear combination of a few atoms. The sparse
representation of a signal possesses an implicit discriminative nature
by choosing the subset of atoms that give the best compact recon-
struction of the signal, and discarding other representations.

Modeling of signals by means of their sparse representation
is a natural and fundamental concept so that it becomes a very
useful tool for different applications. The solution to the problem of
dictionary learning for sparse representation of images has proven
to be successful in many other applications such as image denoising
(Aharon et al., 2006; Elad and Aharon, 2006), compression
(Marcellin et al., 2000), super-resolution (Yang et al., 2010), hand-
written digit classification (Mairal et al., 2008c, 2012), face recogni-
tion (Wright et al., 2009), texture segmentation and classification
(Mairal et al., 2008a; Wright et al., 2010), object detection (Agarwal
and Roth, 2002), color restoration (Mairal et al., 2008b).

There are different research directions that could be taken to
push the frontiers of knowledge in this research field (Elad, 2012).
An opposite alternative to the previously mentioned synthesis-
based sparse representation model for signals is the analysis-
based model where an analysis dictionary is learned so that this
dictionary multiplies a signal to provide the corresponding sparse
code (Rubinstein and Faktor Elad, 2012). Scale-Up of an image
from a down-scaled noisy version with preservation of edges and
small details has been accomplished by using sparse representa-
tion models and regularization (Zeyde et al., 2012). It has been
shown that dictionary learning outperforms off-the-shelf fixed
dictionaries for the case of denoising of astronomical images
(Beckouche et al., 2013). An image has been separated into its
texture and piecewise smooth components by modeling these
components as sparse combination of atoms from dictionaries
(Starck et al., 2005). Algorithms for multi-scale dictionary learning
combine characteristics from multi-scale representation models
(wavelets) and single-scale dictionaries to sparsely represent
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signals (Ophir et al., 2011). Atoms of learned dictionaries have
been modeled as sparse representations over fixed based diction-
aries (double sparsity) (Rubinstein et al., 2010). The Minimum
Length Description Principle is incorporated to the dictionary
learning framework in Ramírez and Sapiro (2012) to optimize
not only the structure of atoms but also the number of atoms and
to automatically tune the sparsity constraint.

Most computer vision problems, addressed with the framework
of sparse representation, only use gray level information as features;
however, spatial information, statistical parameters and other
structures, such as contours, should be added to gray level informa-
tion as entries in feature vectors (this has been done with penalized
logistic models (Yue and Tagare, 2009)) to make dictionaries more
suitable to handle nonhomogeneous spatial artifacts, such as con-
trast and noise, which are characteristic in ultrasound images. For
the case of echocardiographic images, the contrast across endocar-
dium as well as the brightness of myocardium vary spatially due to
the interaction between the propagation of ultrasound waves and
the geometry of myocardium tissue (Yue and Tagare, 2009; Holland
et al., 1999).

There are three categories of dictionary learning algorithms.
In this application, the algorithms follow the direction of the
clustering methods (Tosic and Frossard, 2011). We use dictionaries
which are constructed in two ways, by (1) manual extraction of
image patches to build untrained dictionaries or (2) by patch
extraction followed by dictionary training which consists in mini-
mizing an energy function through optimization methods like MOD
(Egan et al., 2000) or K-SVD (Aharon et al., 2006). In Wright et al.
(2009), the application of untrained dictionaries in classification
tasks has been successful for face recognition (a method called
Sparse Representation Classification—SRC) where (1) the whole
image under low resolution is used as an atom, (2) multiple atoms
correspond to different instances of the same face under different
conditions of illumination and/or occlusion, and (3) one single
dictionary is built by concatenating face dictionaries from different
subjects. This method is useless for our application since this
method was designed to work on atoms which are generative
models of entire images and not for the modeling of isolated image
patches.

During estimation of the sparse representation of a signal,
there is a search for a linear combination of atoms to approximate
the signal of interest. One way of estimating the sparse represen-
tation of a signal consists in using greedy algorithms like Matching
Pursuit (MP) (Mallat and Zhang, 1993) and Orthogonal Matching
Pursuit (OMP) (Pati et al., 1993) which consist in minimizing the l0

norm of the sparse code of the signal under the constraint of an
undetermined system of linear equations. Motivated by the fact
that atoms from untrained dictionaries do not evolve, we propose
the straight use of these manually extracted atoms to reconstruct a
signal by (1) looking for the nearest atoms to the signal and then
(2) using the sub-set of the nearest atoms to estimate the best
linear approximation to the signal. We called this approach
Matching Pursuit over the L Nearest Atoms (MPLNA). Since atoms
are l2 normalized and might be extracted from overlapping image
patches, image segmentation based on sparse representation can
handle patch classification without previous registration.

During image segmentation, patch classification is accomplished
by extraction of a feature vector from the patch, followed by a
transformation of the feature vector into a residual feature vector,
and finally a label is assigned to the patch by searching for the
smallest residual feature inside the transformed vector (Aharon
et al., 2006; Mairal et al., 2008c, 2012, 2008a; Wright et al., 2009,
2010; Rodríguez and Sapiro, 2008). Residual features are residuals of
the approximation of a feature vector over different classes. Instead
of looking for the smallest residual to classify a patch, we propose to
linearly combine residuals from multiple patches in a neighborhood

and use these combinations as features for classification. This
approach accounts for filtering and for spatial interaction of neigh-
boring patches allowing the reduction of isolated misclassified
patches or clusters of misclassified patches.

In Section 2, an overview of the framework on sparse repre-
sentation and dictionary learning is presented, highlighting the
theory suitable to the current application. Section 3 discusses how
sparse representation is applied to the task of segmentation of the
endocardium in ultrasound images as well as contributions in our
application. Section 4 provides the experimental results obtained
by following different strategies of dictionary learning and match-
ing pursuit as well as comparisons. The conclusions are presented
in Section 5.

2. An overview on sparse representation and dictionary
learning

Sparse representation of signals has received considerable atten-
tion as a tool to solve different problems in Computer Vision.
An extensive survey of the challenges, motivation, approaches and
applications of the main algorithms in the field of dictionary learning
for sparse representation is presented by Tosic and Frossard (2011)
and Elad (2010).

A dictionary is a collection of k elements stacked as column
vectors in a matrix D¼ ½d1; d2; …; dk� A Rn � k. Each element,
called atom, is an n-dimensional vector di A Rn in the hyper-sphere
‖di‖2 ¼ 1. The set of atoms fdigki ¼ 1 serves as an over-complete
basis (k4n) for reconstruction of a signal x A Rn.

2.1. Sparse coding

Given a dictionary DARn � k, a signal xARn can be approxi-
mated by a linear combination of its atoms, x¼ ∑k

i ¼ 1αi di ¼D α,
where αARk is the sparse code of the signal. Since D is over-
complete (k ⪢ n), there are many solutions to this undetermined
system of equations. Thus, a constraint is imposed so that the
objective is to find a sparse code α with the smallest number of
non-zero coefficients

α¼ arg min
α

‖α‖0 3 x¼D α ð1Þ

By allowing certain degree of noise, a bounded error ε is
imposed in the reconstruction of x,

α¼ arg min
α

‖α‖0 3 ‖x�Dα‖22oε ð2Þ

where ‖α‖0 is the l0 norm that counts the number of nonzero
components in α. The problem posed in (1) and (2) can be solved
with greedy algorithms like Matching Pursuit (MP) (Mallat and
Zhang, 1993) and Orthogonal Matching Pursuit (OMP) (Pati et al.,
1993). In the sparse coding literature, the l0 norm has been
replaced by the l1 norm and the sparse coding becomes a convex
problem which is solved by different algorithms (Hale et al., 2007;
Malioutov Willsky; Gorodnitsky and Rao, 1997).

2.2. Reconstructive dictionary learning

The goal of dictionary learning is to compute the reconstructive
dictionary D¼ ½d1 d2 … dk� A Rn � k that provides the optimum
sparse reconstruction for a given set of m training signals,
fxigmi ¼ 1 A Rn, called observations or training samples, stacked as
column vectors in a matrix X ¼ ½x1 x2 … xm� A Rn � m. During
dictionary learning, the set of dictionary atoms fdigki ¼ 1 ARn and
the set of sparse codes fαigmi ¼ 1 A Rk, stacked as column vectors in
a matrix A¼ ½α1 α2 … αm� A Rk � m, are simultaneously estimated

R. Rosas-Romero, H.D. Tagare / Engineering Applications of Artificial Intelligence 29 (2014) 201–210202



Download English Version:

https://daneshyari.com/en/article/380664

Download Persian Version:

https://daneshyari.com/article/380664

Daneshyari.com

https://daneshyari.com/en/article/380664
https://daneshyari.com/article/380664
https://daneshyari.com

