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a b s t r a c t

Chaos control can be applied in the vast areas of physics and engineering systems, but the parameters

of chaotic system are inevitably perturbed by external inartificial factors and cannot be exactly known.

This paper proposes an adaptive neural complementary sliding-mode control (ANCSC) system, which is

composed of a neural controller and a robust compensator, for a chaotic system. The neural controller

uses a functional-linked wavelet neural network (FWNN) to approximate an ideal complementary

sliding-mode controller. Since the output weights of FWNN are equipped with a functional-linked type

form, the FWNN offers good learning accuracy. The robust compensator is designed to eliminate the

effect of the approximation error introduced by the neural controller upon the system stability in the

Lyapunov sense. Without requiring preliminary offline learning, the parameter learning algorithm can

online tune the controller parameters of the proposed ANCSC system to ensure system stable. Finally, it

shows by the simulation results that favorable control performance can be achieved for a chaotic

system by the proposed ANCSC scheme.

& 2012 Elsevier Ltd. All rights reserved.

1. Introduction

A model-based non-linear control, which requires a system
dynamic of control plants in designing a controller, is an impor-
tant tool to achieve robust behavior. Since the system may be
unknown or perturbed, the model-based non-linear control
scheme is difficult to be implemented (Slotine and Li, 1991). In
general, a tradeoff problem between the mathematical model
accuracy and the control performance arises in a model-based
non-linear control system. If all uncertainties existed in the
control plants are bounded, a sliding-mode control system pro-
vides system dynamics with an invariance property to uncertain-
ties (Utkin, 1978; Wang and Su, 2003). But, high gains are adopted
and undesirable chattering phenomenon is resulted to guarantee
system stable. The chattering phenomenon becomes the most
important disadvantage of a sliding-mode controller. To over-
come this problem, an adaptive sliding-mode control with system
uncertainties estimator is proposed (Huang et al., 2008). An
adaptation law is derived to online estimate the upper bounds
of system uncertainties; however, it cannot avoid the estimation
growing unboundedly.

Many studies on both the neural networks and fuzzy systems
integrating adaptive control techniques have represented an
alternative design method for the control of unknown or

uncertain non-linear systems (Chen et al., 2009; Chen and Tian,
2009; Chiu, 2010; Czarnigowski, 2010; Huang and Lin, 2011; Hsu,
2012; Li et al., 2007; Zhao and Yu, 2009). The success key element
is the self-learning ability that the neural networks and fuzzy
systems are used to approximate arbitrary linear or non-linear
mappings without requiring preliminary offline tuning. Although
the neural networks can learn from data and feedback, the
meaning associated with each neuron and each weight in the
network is not easily interpreted. Alternatively, the fuzzy systems
are easily appreciated because they use linguistic terms and the
structure of IF–THEN rules. However, the learning capacity of
fuzzy systems is less than that of neural networks.

Recently, neuro-fuzzy networks provide the advantages of
both neural networks and fuzzy systems, unlike pure neural
networks or fuzzy systems alone. Neuro-fuzzy networks bring
the low-level learning and computational power of neural net-
works into fuzzy systems and give the high-level human-like
thinking and reasoning of fuzzy systems to neural networks
(Chen, 2009; Elmas et al., 2008; Li and Chen, 2008). In addition,
a functional-linked neural network (FLNN) is proposed (Patra and
Kot, 2002; Toh and Yau, 2005). The basic idea of FLNN is the use of
the functional links. These functional links generate non-linear
transformations of the original input space before they are fed
into the network which constructs the output layer. The FLNN can
approximate a non-linear function effectively since it is able to
form the output part of neural network by the non-linear
combination of input variables. As a result, there has been
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considerable interest in exploring the applications of FLNN to deal
with non-linearities and uncertainties of control system (Chen
et al., 2008; Lin et al., 2011).

To achieve better learning performance, some researchers
have developed the network structure based on wavelet functions
to construct a wavelet neural network (WNN) which absorbs the
advantages of wavelet decompositions and learning of neural
networks (Billings and Wei, 2005; Chen and Hsu, 2010; Hsu,
2011; Ko, 2012). The wavelet functions have the ability to
decompose wideband signals into time and frequency domains
simultaneously in order to focus on short time intervals for high-
frequency components and on long time intervals for low fre-
quency components. This paper presents a functional-linked
wavelet neural network (FWNN) which combines the advantages
of the FLNN and WNN. Since the output weights of the proposed
FWNN are equipped with a functional-linked type form, the
FWNN is used for function approximation with faster conver-
gence rate and less computational loading than a multilayer
neural network.

Chaotic system is a non-linear deterministic system that dis-
plays complex, noisy-like and unpredictable behavior. It can be
observed in many non-linear circuits and mechanical systems
(Chen and Dong, 1993). For control engineers, control of a chaotic
system has become a significant research topic in physics,
mathematics and engineering communities. This paper proposes
an adaptive neural complementary sliding-mode control (ANCSC)
system which is composed of a neural controller and a robust
compensator for a chaotic system. The neural controller uses a
FWNN to approximate an ideal complementary sliding-mode
controller and the robust compensator is designed to eliminate
the effect of the approximation error introduced by the neural
controller. The parameter learning algorithm online tune the
control parameters based on the gradient descent method and
the Lyapunov stability sense. To show the effectiveness of the
proposed ANCSC system, a comparison among the complemen-
tary sliding-mode control (Wang and Su, 2003), the functional-
linked RBF network control (Lin et al., 2011) and the proposed
ANCSC is performed. In the simulation study, it is shown that the
proposed ANCSC system can achieve better control performance
than other methods.

This paper is organized as follows: Section 2 describes the
dynamics of a chaotic system and the control problem for chaotic
systems is formulated. In Section 3, an ANCSC system is designed
with a FWNN. Then, numerical simulations that confirm the
validity and feasibility of the proposed method are shown in
Section 4. Finally, conclusions are presented in Section 5.

2. Problem statement

Chaotic phenomena have been observed in numerous fields of
science such as physics, chemistry, biology and ecology (Chen and
Dong, 1993; Lin et al., 2010; Pan et al., 2011; Wu and Bai, 2009). It
can be observed in many non-linear circuits and mechanical
systems. Consider a second-order chaotic system such as Chen
and Dong (1993)

€x ¼�p _x�p1x�p2x3þqcosðotÞþu¼ f ðxÞþu ð1Þ

where x is the displacement, f(x)¼�p _x�p1x�p2x3þqcosðotÞ is
the system dynamics, t is the time variable, o is the frequency, u
is the control effort, p controls the size of the damping, p1

controls the size of the restoring force, p2 controls the amount
of non-linearity in the restoring force, q controls the amplitude of
the periodic driving force, and o controls the frequency of the
periodic driving force. In this paper, we chose that p ¼0.4,
p1¼�1.1, p2¼1.0, and o¼1.8. Depending on the choices of these

constants, the solutions of system (1) may display complex
phenomena, including various periodic orbits behaviors and some
chaotic behaviors as Chen and Dong (1993). To observe the
complex phenomena, the time responses of the uncontrolled
chaotic system with initial point (0,0) for q¼2.1 and q¼7.0 are
shown in Fig. 1(a) and (b), respectively. For the time responses
with q¼2.1, an uncontrolled chaotic trajectory can be found, but a
period motion chaotic trajectory happens with q¼7.0. It is shown
that the uncontrolled chaotic system has different trajectories for
different system parameters.

The dynamics of a chaotic system are highly time varying and
non-linear. The control objective of this paper is to find a control
law so that the system state x can track a state command xc

closely. To achieve this control objective, define a tracking error
and a sliding surface as Wang and Su (2003)

e¼ xc�x ð2Þ

s¼ _eþ2keþk2
Z t

0
eðtÞdt ð3Þ

where k is a positive constant. Next, a complementary sliding
surface is designed as Wang and Su (2003)

sc ¼ _e�k2
Z t

0
eðtÞdt: ð4Þ

A significant result concerning the relationship between s and
sc can be obtained as

_sc ¼ _s�k sþscð Þ: ð5Þ

Differentiating (3) with respect to time and using (1), we can
obtain

_s ¼ €eþ2k _eþk2e¼ €xc�f ðxÞ�uþ2k _eþk2e: ð6Þ

Fig. 1. Behavior of uncontrolled chaotic system.
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