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a b s t r a c t

In this paper, we present a realtime signal decomposition method with single-pitch and harmonicity
constrains using instrument specific information. Although the proposed method is designed for
monophonic music transcription, it can be used as a candidate selection technique in combination with
other realtime transcription methods to address polyphonic signals. The harmonicity constraint
is particularly beneficial for automatic transcription because, in this way, each basis can define a single
pitch. Furthermore, restricting the model to have a single-nonzero gain at each frame has been shown to
be a very suitable constraint when dealing with monophonic signals. In our method, both harmonicity
and single-nonzero gain constraints are enforced in a deterministic manner. A realtime factorization
procedure based on Non-negative sparse coding (NNSC) with Beta-divergence and fixed basis functions
is proposed. In this paper, the basis functions are learned using a supervised process to obtain spectral
patterns for different musical instruments. The proposed method has been tested for music transcription
of both monophonic and polyphonic signals and has been compared with other state-of-the-art
transcription methods, and in these tests, the proposed method has obtained satisfactory results in
terms of accuracy and runtime.

& 2013 Elsevier Ltd. All rights reserved.

1. Introduction

An audio spectrogram can be decomposed as a linear combina-
tion of spectral basis functions. In such a model, the short-term
magnitude (or power) spectrum of the signal xðf ; tÞ in frame t and
frequency f is modeled as a weighted sum of the basis functions as

x̂ðf ; tÞ ¼ ∑
N

n ¼ 1
gnðtÞbnðf Þ ð1Þ

where gn(t) is the gain of the basis function n at frame t, and bn(f),
n¼ 1;…;N are the bases. When dealing with musical instrument
sounds in the context of automatic music transcription, ideally,
each basis function represents a single pitch, and the correspond-
ing gains contain information about the onset and offset times of
notes having that pitch.

There are several methods in the literature that are used to
estimate this type of decomposition, such as independent component

analysis (ICA) (Plumbley, 2003), sparse coding (Abdallah and Plumbley,
2004), atomic decompositions (Gribonval and Bacry, 2003) and non-
negative matrix factorization (NMF) (Lee and Seung, 1999).

Sparse representations have received increasing attention
for audio applications such as polyphonic audio transcription
(Abdallah and Plumbley, 2004, 2006; Cont, 2006), speech recogni-
tion (Gemmeke et al., 2011; Hurmalainen et al., 2011) and sound
source separation (Virtanen, 2007; Ozerov and Févotte, 2010).

In sparse coding, the goal is to find a decomposition in which
the gains are sparse. Specifically, the probability densities have
peaks at zero and have heavy tails (Olshausen and Field, 1997), or
in other words, most observations can be encoded with only a few
significant nonzero gain values. This assumption fits well with
the notion that, in music, only a relatively small fraction of the
available notes will be sounded at each frame (Abdallah and
Plumbley, 2004).

When dealing with power or magnitude spectrograms, the
non-negativity of the parameters is a natural restriction. As a
result, it is possible to use the projected steepest descent algo-
rithm, or it is possible to combine NMF and sparse coding, which
leads to non-negative sparse coding (NNSC) (Abdallah and
Plumbley, 2004; Hoyer, 2004).

Depending on the learning process, the basis can be fixed or
adaptive. In a fixed basis, the basis is learned by training the
system on isolated notes, while in an adaptive basis, the basis is
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learned directly from the signal to be analyzed. As demonstrated
in Carabias-Orti et al. (2011), the fixed basis spectra have proven to
provide a good generalization of the model parameters when the
music scene in the training and test signals do not differ too much.

In this paper, we propose a signal decomposition method that
can be used for monophonic music transcription and as a candidate
selection technique in polyphonic transcriptors. This approach is
based on NNSC which is constrained to explicitly assume the signal
to be monophonic with only one possible state (note) at each frame.
This extreme sparsity constraint has been used before by other
signal decomposition methods within a probabilistic framework.
For example, Benaroya et al. (2006) proposed a method for
sound source separation in which each source Short Time Fourier
Transform (STFT) is modeled by a Gaussian Mixture Model (GMM)
modulated by a frame-dependent amplitude parameter accounting
for nonstationarity, which leads to the Gaussian Scaled Mixture
Model (GSMM) where the source is implicitly assumed to be
monophonic with many possible states. This method has also been
used in Durrieu et al. (2010) for main melody tracking in polyphonic
audio signals. Ozerov et al. (2009) proposed a method called the
Factorial Scaled Hidden Markov Model (FS-HMM) that generalized
GSMM and NMF with Itakura Saito divergence (IS-NMF) and
incorporates temporal continuity using Markov modeling.

Conversely, we propose a novel method that enforces single-
pitch and harmonicity constrains in a deterministic manner,
performs the decomposition based on NNSC with Beta-
divergence (Févotte et al., 2009), and uses instrument specific
information, which is learned in a supervised way (i.e. using a
training stage). For the testing stage, the simplicity of the method
allows for the direct computation of the factorization, which leads
to very efficient runtimes in comparison with other signal
decomposition methods found in the literature, such as GSMM
or FS-HMM. In fact, the runtimes obtained and the possibility to
analyze each frame independently makes our method more
suitable for realtime applications where very low latency is
required. Moreover, we propose to use our method as a candidate
selection stage in combination with a realtime signal decomposi-
tion method to address polyphonic music transcription, which is a
more complex scenario. To evaluate the reliability of our method,
we have applied it to the music transcription of monaural mono-
phonic and polyphonic signals, and we have obtained satisfactory
results in comparison with other signal decomposition methods
and selected state-of-the-art transcription methods.

The structure of the rest of the paper is as follows. In Section 2,
we review the harmonicity and sparsity constrained signal decom-
position methods proposed in previous studies. In Section 3, a
novel theoretical approach to constrain a signal model to be
harmonic and have a single nonzero gain is explained, and the
algorithm to perform the decomposition for music transcription is
detailed. In Section 4, we propose a realtime polyphonic transcrip-
tion system in which the novel method explained in the previous
section is used as a candidate selection technique. In Section 5, the
proposed method is applied to music transcription of monophonic
and polyphonic signals and is compared with other state-of-the-
art transcription methods. Finally, we summarize the work and
discuss future perspectives in Section 6.

2. Theoretical background

2.1. Basic Harmonic Constrained (BHC) method

As automatic music transcription is the application of the
method used in this work, this method is constrained to be
harmonic. This restriction has been used in other works devoted
to music transcription (Carabias-Orti et al., 2011; Bertin et al., 2010;

Vincent et al., 2010; Raczyński et al., 2007). The harmonicity
constraint is particularly beneficial for music transcription because
in this way each basis can define a single fundamental frequency.
This constraint is introduced in the model presented in Eq. (1)
requiring that a distinct basis function represents each note of the
instrument.

bnðf Þ ¼ ∑
M

m ¼ 1
an½m�Gðf−mf 0ðnÞÞ ð2Þ

where bn(f), n¼ 1;…;N are the bases for each note n, m¼ 1;…;M is
the number of harmonics, an½m� is the amplitude of harmonic m for
note n, f 0ðnÞ is the fundamental frequency of note n, G(f) is the
magnitude spectrum of the window function, and the spectrum of a
harmonic component at frequency mf 0ðnÞ is approximated by
Gðf−mf 0ðnÞÞ.

The model for the magnitude spectra of a music signal is then
obtained as

x̂ðf ; tÞ ¼ ∑
N

n ¼ 1
∑
M

m ¼ 1
gnðtÞan½m�Gðf−mf 0ðnÞÞ ð3Þ

where the time gains gn(t) and the harmonic amplitudes an½m� are
the parameters of the method to be estimated.

To obtain the factorization of Eq. (3), the reconstruction error
between the observed spectrogram xðf ; tÞ and the modeled spec-
trogram x̂ðf ; tÞ is minimized. In several recent works (Vincent et al.,
2010; Févotte et al., 2009; Févotte and Idier, 2011), the cost
function to be minimized is the Beta-divergence,

Dβðxðf ; tÞjx̂ðf ; tÞÞ ¼

∑f ;t
1

βðβ−1Þðxðf ; tÞ
β þ ðβ−1Þx̂ðf ; tÞβ−βxðf ; tÞx̂ðf ; tÞβ−1Þ β∈ð0;1Þ∪ð1;2�

∑f ;txðf ; tÞlog
xðf ; tÞ
x̂ðf ; tÞ−xðf ; tÞ þ x̂ðf ; tÞ β¼ 1

∑f ;t
xðf ; tÞ
x̂ðf ; tÞ þ log

xðf ; tÞ
x̂ðf ; tÞ−1 β¼ 0

8>>>>>>>><
>>>>>>>>:

ð4Þ
The Beta-divergence includes in its definition the most popular

cost functions. When β¼ 2, the Beta-divergence is equivalent to
the Euclidean (EUC) distance. The Kullback–Leibler (KL) diver-
gence is obtained when β¼ 1, and the Itakura–Saito (IS) diver-
gence is computed when β¼ 0.

2.2. BHC with Sparse Constraint (BHC-SC) method

Sparsity is a natural restriction applied to the gains that enforces
the signal model to have only a few nonzero gains gn(t) at each
frame t. This assumption fits well with the concept that, in music,
only a relatively small fraction of the available notes will be
sounded at each frame. In the special case of monophonic tran-
scription, there should be only a single nonzero gain at each frame.
Other works devoted to transcription and source separation have
used sparseness in their signal models (Abdallah and Plumbley,
2004; Gemmeke et al., 2011; Virtanen, 2007; Hoyer, 2004).

For signal models that minimize a divergence, the sparsity is
typically introduced as a regularization penalty term (Gemmeke
et al., 2011). This penalty term helps to discard those solutions in
which most of their gains are set to nonzero values. The cost
function is then defined as

Dðxðf ; tÞjx̂ðf ; tÞÞ ¼Dβðxðf ; tÞjx̂ðf ; tÞÞ þ λ∑
n;t
ϕðgnðtÞÞ ð5Þ

where ϕ is a function that penalizes nonzero gains and λ is a
parameter that controls the importance of the regularized term.
Although there are several definitions for the penalty terms in the
literature, in the experimental setup we have used the L1 norm
ϕðxÞ ¼ ∥x∥1 as proposed in Virtanen (2007), Olshausen and
Field (1997), Candés and Wakin (2008) because it has proven to
be less sensitive to variations in parameter λ (Virtanen, 2007).
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