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a b s t r a c t

The Stewart platform, a representative of the class of parallel manipulators, has been successfully used in
a wide variety of fields and industries, from medicine to automotive. Parallel robots have key benefits
over serial structures regarding stability and positioning capability. At the same time, they present
challenges and open problems which need to be addressed in order to take full advantage of their utility.
In this paper, we propose a new approach for solving one of these key aspects: the solution to the
forward kinematics in real-time, an under-defined problem with a high-degree nonlinear formulation,
using a popular machine learning method for classification and regression, the Support Vector Machines.
Instead of solving a numerical problem, the proposed method involves applying Support Vector
Regression to model the behavior of a platform in a given region or partition of the pose space.
It consists of two phases, an off-line preprocessing step and a fast on-line evaluation phase.
The experiments made have yielded a good approximation to the analytical solution, and have shown
its suitability for real-time application.

& 2013 Elsevier Ltd. All rights reserved.

1. Introduction

A few years after the term robot was coined, the first industrial
parallel robot, a spray painting machine, was patented by Pollard
(1940). Extensively used as manipulators in a wide variety of fields,
e.g. medicine, optics, astronomy and many industries like aerospace,
automotive and aviation, parallel robots have attracted the attention
of many researchers in recent decades. They can be classified as
closed-loop mechanisms, in contrast to serial robots, which are
usually open-loop kinematics chains. Instead, they consist of two
frames connected by means of active links, such as prismatic
actuators, sometimes called legs. The advantages of this type of
structure include a greater rigidity and positioning capability, good
dynamic performance and high load carrying capacity, which make
them very attractive in many applications and fields. Notable
examples of parallel manipulators are the Delta robot (Clavel,
1988), the Tricept (Siciliano, 1999) and the Gough–Stewart platform.
Presented by Gough (1956–1957) as a tyre testing machine, it is one
of the most popular parallel manipulators. It gained popularity
as a flight simulator (Stewart, 1965–1966) and is commonly known
as the Stewart platform. The first design as a manipulator system
was presented by McCallion and Pham (1979) as an assembly

workstation. A detailed and very informative review by Dasgupta
and Mruthyunjaya (2000) provides an extensive account of some
relevant aspects of the Stewart platform.

In this paper we present a novel method for solving the
Forward Kinematics Problem (FKP), still a relevant topic for some
types of parallel manipulators, e.g., those with joint offsets. For
such robots, unlike the inverse kinematics problem, the FKP lacks a
closed-form mathematical solution. It is an under-defined problem
with a high-degree of nonlinearity in which the solution in most
cases is not unique. Although kinematics is one of the most
studied topics of parallel robots, the FKP continues to gain interest,
especially in terms of those methods which can solve it in real-
time. This is essential for a platform characterization and its
closed-loop control to know the position and orientation (pose)
by means of the length of the linear actuators attached to the
joints.

A review of the literature shows that the FKP in parallel robots
has been solved in recent years using numerical as well as
approximate methods and strategies. Liu et al. (1993) describe
an analytical solution for the generalized configuration, i.e., 6-SPS
(Spherical–Prismatic–Spherical), whereas some authors propose
a simplification of the model (Nanua et al., 1990), which is solved
with numerical methods like Newton–Raphson, or use of an
interval analysis (Merlet, 2004) to work out the solution. However,
these methods lack generalization, since they are proposed for
particular types of platform. Other methods develop a solution
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to the FKP by directly applying a numerical method (Dieudonne
et al., 1972) like Newton–Raphson. For instance, Dalvand and
Shirinzadeh (2011, 2012) proposed an algorithm which yields
solutions by means of an iterative method for a platform with
joint offsets, a 6-RRCRR (Rotational–Rotational–Cylindrical–
Rotational–Rotational) parallel manipulator, which does not have
a closed-form solution for the FKP. In general, these techniques can
achieve accurate solutions with enough iterations of the
algorithms, but may have convergence problems and high com-
putational requirements. Furthermore, there are other solutions
that add rotary type sensors or extra links (Merlet, 1993; Chen and
Fu, 2006) to obtain additional information, in order to aid and
simplify the algorithms. However, these approaches may be
difficult to generalize and in some cases will not be applicable
due to structural or mechanical constraints. In addition, approx-
imate solution strategies have been successfully applied, mainly by
means of Artificial Intelligence methods like neural networks, in
order to study kinematics of serial robots (Gao et al., 2010; Karlik
and Aydin, 2000; Köker, 2005; Chiddarwar and Babu, 2010) and
parallel robots (Parikh and Lam, 2009; Tarokh, 2007). These
strategies are more suited to real-time applications and obtain
good enough approximations for a wide variety of fields.

This paper presents a spatial decomposition method for obtain-
ing accurate solutions in real-time for the FKP of Stewart platforms
using a popular machine learning method, the Support Vector
Machines (SVMs), as the regression model. Firstly, the method is
applied to a 6-SPS parallel manipulator for which an analytical
solution exists. In order to verify its correctness and efficiency, the
yielded results are compared with the polynomial curve fitting
method proposed by Tarokh (2007), and against the exact analy-
tical solution for a generalized Stewart platform presented by
Liu et al. (1993). Secondly, a similar experiment is conducted with
a real parallel manipulator, the M-850 hexapod by Physik
Instrumente.

This paper is organized as follows. Kinematics in parallel robots
are discussed in Section 2. The spatial decomposition method
is introduced in Section 3, followed by the description of the
classification procedure in Section 4. Then, the forward kinematics
modeling with SVR machines and the on-line evaluation procedure
are detailed in Section 5. Finally, results of different experiments
are discussed in Section 6, and the main conclusions are summar-
ized in Section 7.

2. On kinematics of parallel robots

2.1. The 6-SPS general Gough–Stewart platform

The theory of serial–parallel duality, which highlights the
qualitative distinctions between serial and parallel manipulators,
states that in both position and velocity there is a symmetric
relationship in the forward and inverse cases (Collins and Long,
1995). In contrast to the simple forward kinematics and compli-
cated inverse kinematics of serial manipulators (requiring the
solution of a system of nonlinear equations), parallel manipulators
exhibit more or less straightforward inverse kinematics and a
challenging solution for the forward kinematics problem.

The generalized Gough–Stewart platform is the most cele-
brated manipulator in the entire class of parallel robots. It has
found a central status in the literature due to the fact that it
exhibits the serial–parallel duality in the most prominent manner.

As shown in Fig. 1, the generalized configuration is composed
of two platforms and a set of linear actuators, typically six, often
called legs. Consider a fixed base B, with a coordinate frame XYZ
attached to it, and another coordinate frame xyz fixed to the top
platform A. Let us define the link space as the 6-D space consisting

of the value of the length of each leg. A link vector represents a
position in the link space as a 6-D vector l¼ ½l1; l2;…; l6�⊤. Similarly,
the pose space is the 6-D space that represents the position and
orientation of the top platform (or end effector), as a combination
in 3-D Cartesian coordinates of position ½x; y; z� and 3-D orientation
angles ½α; β; γ�. A pose is defined by the vector p¼ ½x; y; z; α; β; γ�⊤.

Let d denote the displacement vector of the frame ½x; y; z�
relative to the frame XYZ, let Bi be the position of the i-th link
(leg) attached to the base relative to XYZ, and similarly let Ai be the
position of the i-th link attached to the top platform with respect
to ½x; y; z�. Finally let R be the 3�3 rotation matrix that defines the
rotating angles of the frame ½x; y; z� with respect to the frame XYZ.
Since there is no joint offsets, the length of each link connecting
the base to the top can be written as

li ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∥RAi þ d−Bi∥

p
i¼ 1;2;…;6

¼ f iðpÞ; ð1Þ

where fi(p) is a known function and p is the top platform pose.
It is noted that Ai and Bi are known for a given hexapod.
Furthermore, specification of the pose, i.e., position and orienta-
tion of the top platform, determines the rotation matrix R and
displacement vector d.

For parallel robots, the forward kinematics problem can be
stated as follows: Given a link vector l, and the position of link
attachments to the top and base platforms, Ai and Bi (with
i¼ 1;2;3;4;5;6), respectively, find the set of all possible poses p
that satisfy (1).

2.2. A platform with joint offsets: the 6-RRCRR case

This kind of hexapod is convenient in some situations, for
example when there are manufacturing constraints, since univer-
sal joints are more complex to produce. Fig. 2 shows a diagram for
a given leg. It is composed of two revolute joints, separated by an
offset given by PJ, a prismatic joint, a passive cylindrical joint, and
similarly, another two revolute joints with the same offset. For the
i-th leg, the joint variables are qki, with k¼ 1;2;3;4;5;6. This
configuration leads to more complicated kinematics equations,
since dependency between joint variables exists. An inverse
kinematics solution for this parallel manipulator is the distance
between joints q1i and q6i, i.e., the Euclidean norm of vector q3i,

Fig. 1. The general Gough–Stewart platform, a class of parallel robots.
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