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a b s t r a c t

The probabilistic reliability evaluation of composite power systems is a complicated, computation
intensive, and combinatorial task. As such evaluation may suffer from issues regarding high dimension-
ality that lead to an increased need for computational resources, MCS is often used to evaluate the
reliability of power systems. In order to alleviate this burden, an analytical method known as state space
decomposition has previously been used to prune the state space that is sampled using MCS.

This paper extends the state-of-the-art by proposing a novel algorithm known as intelligent state
space pruning (ISSP). This algorithm leverages the intelligence of highly modified population based
metaheuristic (PBM) algorithms including genetic algorithms (GA), particle swarm optimization (PSO),
ant colony optimization (ACO), and artificial immune systems (AIS) to quickly, efficiently, and
intelligently prune the state space that is used during MCS. The presented PBMs are modified using
domain-specific knowledge to improve their performance and fine tune their intelligence. This new
algorithm leads to reductions of up to 90% in total computation time and iterations required for
convergence when compared to non-sequential MCS. Results are reported using the IEEE Reliability Test
Systems (RTS79/MRTS).

& 2013 Elsevier Ltd. All rights reserved.

1. Introduction

The reliability assessment of modern power systems is often
modeled as a large and complex combinatorial problem. This
makes the calculation of reliability indices a challenging task as
it drastically increases the dimensionality of the problem with the
size of the system. Two examples of this are the IEEE Reliability
Test Systems (IEEE-RTS) known as IEEE-RTS79 (IEEE Committee
Report, 1979) and MRTS (EPRI, 1987; Pereira and Balu, 1992). These
test systems each have 32 generators leading to a minimum state
space size of 232. To address the issues of high dimensionality and
computational complexity, works have previously been proposed
in order to develop new, improved, and computationally more
efficient methods for dealing with the analysis of power system
reliability. Examples include Monte Carlo Simulation (MCS)
(Billinton and Allan, 1996; Billinton and Li, 1994), analytical state
space decomposition (Mitra and Singh, 1996, 1999; Singh and
Mitra, 1997), and population based metaheuristics (PBMs) (Patra
et al., 2006; Samaan and Singh, 2002; Samaan, 2004; Wang and
Singh, 2008; Singh and Wang, 2008).

MCS, a stochastic simulation method, is often used for evaluat-
ing reliability indices of power systems at various levels and comes
in two flavors: sequential and non-sequential. Sequential MCS
samples system states in time order over different periods while
non-sequential MCS samples system states proportional to their
probability of occurrence. Sequential MCS requires greater com-
putational power but handles sequentially correlated events well,
but non-sequential MCS substantially improves computational
efficiency. As such, non-sequential MCS is often favored over
sequential MCS for many applications where sequential correla-
tions are not important. The major advantage of non-sequential
MCS is its inherent ability to handle large and complex power
system models and the major disadvantage is that in systems with
high levels of reliability the time for convergence can become
excessively long. Although the sample size for convergence is
independent of the size of the system, the computational effort
does increase as calculations like the power flow take a longer
time for larger systems. The need to reduce the computational
effort for convergence in complex systems has been the driver
behind much of the work that has previously been reported in this
area. For instance, an analytical, decomposition based method has
been proposed in Mitra and Singh (1996, 1999) and Singh and
Mitra (1997). The major limitation of decomposition techniques is
the ability to handle coherency well, as the use of AC or DC power
flow methods causes the system to become non-coherent (Singh
and Mitra, 1997).
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This work demonstrates a new algorithmic method named
intelligent state space pruning (ISSP) that reduces the computational
resources required of MCS by intelligently and efficiently pruning a
given state space through the use of PBM algorithms that are
modified in a domain-specific manner. Though the ISSP algorithm
may be applied to any use of non-sequential MCS, this study focuses
on its role in the probabilistic evaluation of composite power system
reliability. While PBMs that address adequacy in such situations are
typically designed to quickly and intelligently sample states where
there is a loss-of-load (states with power loss), we take a new
approach and design these algorithms to sample those states where
there is no loss-of-load (states without power loss). Through the
efficient sampling and removal of non-loss-of-load states, we are able
to present the MCS algorithm with a conditional state space that has
a higher density of loss-of-load states. It is expected that the use of
this conditional state space will allow the MCS algorithm to converge
more quickly and consume less computational resources.

Because a major goal of this algorithm is achieving an optimal
level of pruning, this paper focuses on four specific PBM algorithms
(genetic algorithms (GA), particle swarm optimization (PSO), ant
colony optimization (ACO), and artificial immune system optimiza-
tion (AIS)) and their role in the novel ISSP algorithm. The inherent
intelligence in each of these algorithms is fine-tuned through
multiple modifications that are based on the forced outage rates
of system components. While these four algorithms are used in this
study due to their general popularity, there is no reason other
search algorithms that have been used for practical applications like
the Harmony Search (Geem et al., 2001) or Bee Colony Optimization
(Teodorovic and Dell'orco, 2005) algorithms could not be used.

The remainder of this paper is structured as follows: Section 2
reviews the foundational concepts used to develop the ISSP algo-
rithm including state space decomposition, PBMs, and the role of
PBMs in composite power system reliability assessment; Section 3
proposes and discusses the newly developed ISSP algorithm;
Section 4 details the application of the ISSP algorithm to composite
power system reliability assessment; and Section 5 presents results,
analysis, and other discussions.

2. Background and literature review

Before discussing the ISSP algorithm and its application to the
evaluation of composite power system reliability, this section reviews
the fundamental and state-of-the-art techniques for improving the
convergence of non-sequential MCS as applied to composite power
system reliability. This includes a brief review of PBM algorithms, the
use of PBMs to improve the state sampling phase of MCS, and state
space decomposition. While many of the reviewed works focus on
improving the performance of the sampling phase of the direct MCS
algorithm (as ISSP does), there are also many works that have
focused on improving the computational efficiency of the classifica-
tion phase of the MCS algorithm. These include the use of differing
types of neural networks (Amjady, 2004; Amjady and Ehsan, 1999;
Chaturvedi et al., 2009; Reddy and Singh, 1988; Singh et al., 2006;
Song et al., 2005), hybrid neural networks (Luo et al., 2003; Leite da
Silva et al., 2007; da Silva et al., 2008; Singh et al., 2006), support
vector machines (Green et al., 2011), and other methods of pattern
classification (Bordeerath and Jirutitijaroen, 2012).

2.1. Population based metaheuristic algorithms

PBMs are intelligent, guided, stochastic searching techniques
that each have a nuanced flavor of search that may or may not
benefit different types and formulations of problems. Each of these
algorithms uses a population of possible solutions that are
iteratively and stochastically changed rather than focusing on

improving a single solution. More recent examples of such algo-
rithms and their applications include:

� Artificial Bee Colony Optimization (Ajayan and Balaji, 2013;
Dhinesh Babu and Venkata Krishna, 2013; Cuevas et al., 2013;
Karaboga and Cetinkaya, 2011; Tsai et al., 2012);

� Bat-Inspired Optimization (Bora, 2012; Ramesh et al., 2013;
Yang, 2010; Yang and Gandomi, 2012);

� Central Force Optimization (Ding et al., 2011, 2012; Formato,
2007; Green et al., 2012; Mahmoud, 2011; Mohammad and Dib,
2009; Qubati, 2009);

� Cuckoo Search (Gupta et al., 2013; Moravej and Akhlaghi, 2013;
Yang, 2009; Zhou et al., 2013);

� Differential Evolution (Storn and Price, 1997);
� Firefly algorithm (Miguel et al., 2013; Mohammadi et al., 2013;

Tilahun and Ong, 2013; Silva et al., 2013; Sanaei et al., 2013;
Yang, 2009);

� GlowWorm Optimization (Krishnanand and Ghose; Krishnanand
and Ghose, 2006, 2008, 2009);

� Harmony Search (Geem et al., 2001; Mahdavi et al., 2007);
� Monkey Search (Wang et al., 2010; Yi et al., 2012); and
� Scatter Search (Glover, 1998; Ribeiro and Resende, 2012).

This study focuses on four of the more common examples of
these algorithms including the GA (de Castro, 2006; Goldberg,
1989), PSO (de Castro, 2006; Eberhart and Kennedy, 1995a,b; Poli
et al., 2007), ACO (Dorigo, 1992), and AIS (Castro, 2002; Castro and
Zuben, 2002; de Castro and Von Zuben, 2000) algorithms.

2.2. PBMs in composite power system reliability

PBM algorithms have been applied to the probabilistic relia-
bility analysis of composite power systems in many instances.
These applications have mainly been focused on the use and
modification of GA and PSO, but some works have also included
AIS and ACO. All those works concerned with the evaluation of
reliability will be examined here.

The work in this area begins in Samaan and Singh (2002, 2007)
and Samaan (2004), where a foundation is laid for the use of GAs.
Methods are developed to evaluate the reliability of both generation
and composite systems using chronological and non-chronological
loads. Multiple reliability indices are calculated for each scenario
and the Roy Billinton Test System (RBTS) is used for evaluation.
Results show that the methods presented maintain the accuracy of
MCS and reduce the computational effort by 80–90%.

Contributions regarding PSO are made by Patra et al. (2006)
where a multi-objective PSO implementation of composite power
system reliability is developed and analyzed. The two objectives
used are the maximization of the probability of state occurrence
and the maximization of load curtailment. These conflicting
objectives allow the MOPSO to sample the state space in a more
optimal fashion. Accurate results are obtained for the MRTS along
with an analysis of the convergence behavior of the MOPSO.

Investigations regarding the combination of population based
intelligent search (PIS) methods (GA, PSO, ACO, and AIS) and
composite system reliability evaluation are examined by Wang
and Singh (2008). This work presents a method for incorporating
PIS and time dependent wind turbine generators (WTG) to
evaluate the composite reliability using the IEEE-RTS79. Discus-
sions are developed regarding all aspects of these algorithms along
with a comparison of PIS and the MCS algorithm used and a
discussion of the state sampling methodology. The method is
shown to be more effective in terms of computational time.

Further contributions regarding MOPSO are made in Mitra and
Xu (2010). Here, the main contribution is the identification of
three measures that aid in improving the convergence of reliability
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