
Robust design of multi-agent system interactions: A testing approach
based on pattern matching

Celia Gutiérrez a,n, Iván García-Magariño b, Emilio Serrano c, Juan A. Botía d

a Department of Software Engineering and Artificial Intelligence, Facultad de Informática, Universidad Complutense de Madrid, Madrid 28040, Spain
b Departamento de Ingeniería Informática y Organización Industrial, Facultad de Enseñanzas Técnicas, Universidad a Distancia de Madrid,
Collado Villalba 28400, Spain
c Departamento de Ingeniería de Sistemas Telemáticos, Escuela Técnica Superior de Ingenieros de Telecomunicación, Universidad Politécnica de Madrid,
Madrid 28040, Spain
d Departamento de Ingenieria de la Información y las Comunicaciones, Facultad de Informática, Universidad de Murcia, Murcia 30100, Spain

a r t i c l e i n f o

Article history:
Received 11 October 2012
Received in revised form
17 April 2013
Accepted 12 June 2013
Available online 15 August 2013

Keywords:
Agent-oriented software engineering
Communication
Debugging
Interaction
Multi-agent system
Testing

a b s t r a c t

The definition of protocols between agents is not enough for guaranteeing the absence of undesirable
communication in organizations and the presence of desirable ones in large multi-agent systems (MASs).
This is a consequence of the complex system nature of MASs, which cause sophisticated behaviors to
arise out of a multiplicity of relatively simple interactions among the independent agents composing
them. With this motivation, this paper presents an approach for testing communication in MAS
architectures. In this approach, designers are not only recommended to specify the desired commu-
nication protocols, but also the undesired patterns and organization structures in the agents’ commu-
nications, allowing designers to define robust communication structures. For this purpose, this work
presents (1) a language to define such patterns; (2) a set of already defined desired and undesired
patterns which usually appear in general MASs; (3) a tool that allows developers to automatically detect
these patterns in logs of MAS executions; and (4) a guideline that takes developers through the testing of
the communications in MASs. The current approach is experienced with a case study, and the results
show that the application of the current approach and the suppression of detected undesired patterns
improve the effectiveness and efficiency of the corresponding MAS.

& 2013 Elsevier Ltd. All rights reserved.

1. Introduction

A MAS is a system composed of multiple intelligent inter-
acting agents, where an agent is a computer system which is
able to perform independent actions in order to satisfy its
design objectives (Wooldridge, 2002). MASs may be used to
implement a wide range of computer systems such as the Grid,
the Semantic Web, peer-to-peer systems, pervasive computing,
and ambient intelligence (Serrano and Botia, in press). Agents in
a MAS interact among themselves, typically by messages
through a computer network, and make decisions based on
these interactions. The testing of these interactions, being
testing “the process of executing a program with the intent of
finding errors” (Myers et al., 2004), is an extremely complex
task. This complexity is mainly given by a well-known feature of
agent technologies: their ability to generate unpredictable,
complex and emergent behaviors from very simple rules
(Bauer et al., 2009). This paper is focused on defining an
approach to conduct testing activities within the process of

MAS software development, and more specifically, in the design
of the interactions among agents.

Let us consider a MAS with a set of n agents A. Let us also consider
that each agent communicates with na agents in the system and
finally that each agent sendsma messages each time it communicates
with another agent (including responses to received messages). Then,
the number of elements of the set of messages M is the result of the
following expression: jMj ¼ n � na �ma. If we consider as an example
the very simple case in which agents send a single message to
another agent for a consultation and they respond with a single
message, then na ¼ ðn−1Þ and the number of messages sent by each
agent is ma¼2, values corresponding to a MAS with a very poor
communication. In this case, jMj ¼ n � ðn−1Þ � 2¼ 2n2−2n. This exam-
ple (Serrano et al., 2010) shows that the number of messages grows
rapidly with the number of agents, even in systems with very low
exchange of messages. Therefore, executions of concurrent systems
become a complex task when the number of involved participants
grows (Wu et al., 2010). In consequence, the principal line of
investigation that has been followed in the testing and debugging
of MASs is the automation of the testing of agent's interactions.

One of the most popular approaches to perform this automatic
testing of interactions is the use of Petri-nets (Poutakidis et al.,
2002). As the related works section explains, other proposals are

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/engappai

Engineering Applications of Artificial Intelligence

0952-1976/$ - see front matter & 2013 Elsevier Ltd. All rights reserved.
http://dx.doi.org/10.1016/j.engappai.2013.06.006

n Corresponding author.
E-mail address: cegutier@fdi.ucm.es (C. Gutiérrez).

Engineering Applications of Artificial Intelligence 26 (2013) 2093–2104

www.sciencedirect.com/science/journal/09521976
www.elsevier.com/locate/engappai
http://dx.doi.org/10.1016/j.engappai.2013.06.006
http://dx.doi.org/10.1016/j.engappai.2013.06.006
http://dx.doi.org/10.1016/j.engappai.2013.06.006
http://crossmark.dyndns.org/dialog/?doi=10.1016/j.engappai.2013.06.006&domain=pdf
http://crossmark.dyndns.org/dialog/?doi=10.1016/j.engappai.2013.06.006&domain=pdf
http://crossmark.dyndns.org/dialog/?doi=10.1016/j.engappai.2013.06.006&domain=pdf
mailto:cegutier@fdi.ucm.es
http://dx.doi.org/10.1016/j.engappai.2013.06.006


based on the use of the Agent Unified Modeling Language (AUML)
(Odell et al., 2000), Propositional dynamic logic (Paurobally, 2003),
Statecharts (Harel and Politi, 1998), or Dooley graphs (Parunak,
1996). These approaches employ formalisms to define the proto-
cols which specify the interaction between agents and, afterwards,
these definitions provide the developer with an automatic testing
of the interactions. These are significant contributions to the Agent
Oriented Software Engineering (AOSE), but they present a series of
downsides that this paper attempts to deal with. These approaches
merge the definition of a protocol with its testing. This is not
practical when the possible faults in the interactions do not
depend on the protocol but on the semantics exchanged or the
specific execution of the MAS. For instance, a particular execution
of the Foundation for Intelligent Physical Agents (FIPA) Iterated
Contract Net Interaction Protocol (FIPA, 2001) may involve more
than a hundred iterations. Is that amount of iterations a bug? this
depends on the specific execution and the specific system. In
addition, most approaches require the use of a concrete modeling
language of the protocols and this reduces their usability, since
developers are forced to use these if they want to address the
testing of the interactions. Moreover, separating the definition of
the protocols from the testing code, like the approach presented in
this paper, the latter can be reused for several cases of the former,
since the same bugs looked for in a protocol can be found in
systems interacting by other protocols. Another added advantage
of the separation between protocol definitions and testing code is
that different developers can write them. This is a great advantage
from the point of view of software engineering since it is often
hard that developers detect all the mistakes made by themselves.
Finally, desirable and undesirable recurring bugs in the design of
MASs should be provided. These patterns would serve as “con-
venient design practices” to address the construction of these
systems regardless of the specific modeling language employed.

This paper proposes an approach that assists designers in
defining sets of tests to provide their MASs with robust commu-
nications. Desirable and undesirable patterns commonly found in
the execution of these systems are provided in a formal and
intuitive way. These patterns can be specific of a MAS (e.g. two
types of agents that should not directly exchange information) or
more general (e.g. deadlocks and redundancies). More specifically,
the patterns presented are: (1) deadlock, to detect deadlocks
between agents; (2) inanition, occurring when an agent keeps
waiting a message from other; (3) redundancy, to deal with
redundant interactions; (4) Bias Agent, bias for an agent to
communicate with the same agent; (5) Bias Type, bias for agents
of a specific type to communicate with the same agent; and
(6) unexpected, unexpected sequence of agent types regarding it
as the sequence of message senders in the same conversation. Due
to the versatility of MASs, these patterns are not fixed. Therefore,
an essential part of the testing approach presented in this paper,
which takes the developer through the testing of the interactions
in a specific execution of a concrete system with a particular
semantics, is the adaptation of the general patterns to the
specific case.

The main components of the testing approach presented in this
paper are: (1) a formal language for specifying communications
patterns; (2) a corpus of general behaviors defined with this
language that are usually undesirable; (3) a tool to detect these
patterns automatically from logs of MAS executions; and (4) a
guideline to apply the approach and achieve robust communica-
tions in MASs. We have a previous work in Gutiérrez and García-
Magariño (2011) with the experimentation to a case study. With
the presented work, we provide a robust approach, with its
application to a different case study. Our aim is to illustrate the
usefulness of this proposal and its suitability for MASs built by
different agent-oriented methodologies. Furthermore, the new

presented case study has been measured before and after applying
the presented approach and suppressing the detected undesired
patterns, and the results show that the current approach improved
the effectiveness and performance of the communications of the
MAS of this case study. Unlike other previous works (Serrano et al.,
2013, the approach presented is syntax-oriented since the usabil-
ity and coverage are our main concern. The proposal can be easily
employed in most conceivable MASs without design constraints to
deal with the interactions information. For that purpose, the
approach is based on simple fields which are always present in
these systems or trivially added. Concretely, the messages contain:
timestamp, sender, receivers and a specific performative.

In brief, the structure of this paper is the following: Section 2
covers the related works in this area; Section 3 introduces the
presented approach (the formal language, the patterns in interac-
tions based on this language, the tool for detecting the patterns,
and the guideline for testing communications); Section 4 describes
the experimental results based on the development of a MAS and
measures its improvements of effectiveness and efficiency; and
finally, Section 5 mentions the conclusions and future work.

2. Related works

The main research line that has influenced the present work is
the automatic testing of agent's interactions (Serrano et al., 2010).
This kind of approaches usually needs three steps: (1) to define the
protocols which specify the interaction between agents; (2) to
automatically test whether these protocols were correctly per-
formed, based on whether the agents do not violate the specifica-
tions; and (3) to locate the errors found through some sort of
display.

Petri-nets are one of the most popular methods to specify and
debug communications between agents (Mazouzi et al., 2002; Cost
et al., 2000; Nowostawski et al., 2001). They consist of a general-
ization of automata theory so as to be able to express events
occurring simultaneously. Poutakidis et al. (2002) propose specify-
ing protocols with AUML and translating them into Petri-net
formalism. In the same vein, Miller et al. (2010) defines two test
coverage criteria for agent interaction testing: protocol-based
coverage criteria and plan-based coverage criteria. The former
use a protocol specification and the latter also needs plans that
interact with the protocol. Again, the protocols are defined by
using Petri Nets which, besides, are annotated to measure the
mentioned test coverage criteria.

AUML (Odell et al., 2000) is an extension of the UML notation
for specifying interaction protocols for agents. AUML provides a
range of features such as merging of messages, a non-exclusive
choice, and the ability to specify sequencing of messages. AUML
and Petri-nets are utilized by the debugger in the contribution
mentioned to monitor conversations and provide error messages
when protocols are not followed correctly. With this approach, the
same authors classify typical mistakes that can be found in MASs
(Poutakidis et al., 2003): uninitialized agent, failure to send, wrong
recipient, message sent multiple times, and wrong message sent.

Besides the AUML diagrams and Petri nets, other approaches
for the automatic testing of protocols use:

� Propositional dynamic logic (Paurobally, 2003). Dynamic logic is
an extension of modal logic. The extension proposed by the
authors is called the Agent Negotiation Meta-Language (ANML).
Interaction protocols in ANML are in the form of multi-modal
theories, leading to an abstract theory of an interaction in a
group and allowing the automatic testing of these protocols.

� Statecharts (Harel and Politi, 1998). A statecharts diagram is a
type of diagram used to describe the behavior of systems.

C. Gutiérrez et al. / Engineering Applications of Artificial Intelligence 26 (2013) 2093–21042094



Download English Version:

https://daneshyari.com/en/article/380752

Download Persian Version:

https://daneshyari.com/article/380752

Daneshyari.com

https://daneshyari.com/en/article/380752
https://daneshyari.com/article/380752
https://daneshyari.com

