
Designing multi-agent unit tests using systematic test
design patterns-(extended version)$

Mohamed A. Khamis a,n, Khaled Nagi b

a Department of Computer Science and Engineering, Egypt-Japan University of Science and Technology (E-JUST), New Borg El-Arab City, Alexandria 21934, Egypt
b Department of Computer and Systems Engineering, Faculty of Engineering, Alexandria University, Egypt

a r t i c l e i n f o

Article history:
Received 21 December 2012
Received in revised form
3 March 2013
Accepted 18 April 2013
Available online 20 May 2013

Keywords:
Multi-agent unit tests
Test-driven development
Mock agent
Agent social design patterns
Code generation
Code coverage

a b s t r a c t

Software agents are the basic building blocks in many software systems especially those based on
artificial intelligence methods, e.g., reinforcement learning based multi-agent systems (MASs). However,
testing software agents is considered a challenging problem. This is due to the special characteristics of
agents which include its autonomy, distributed nature, intelligence, and heterogeneous communication
protocols. Following the test-driven development (TDD) paradigm, we present a framework that allows
MAS developers to write test scenarios that test each agent individually. The framework relies on the
concepts of building mock agents and testing common agent interaction design patterns. We analyze
the most common agent interaction patterns including pair and mediation patterns in order to provide
stereotype implementation for their corresponding test cases. These implementations serve as test
building blocks and are provided as a set of ready-for-reuse components in our repository. This way,
the developer can concentrate on testing the business logic itself and spare him/her the burden of
implementing tests for the underlying agent interaction patterns. Our framework is based on standard
components such as the JADE agent platform, the JUnit framework, and the eclipse plug-in architecture.
In this paper, we present in details the design and function of the framework. We demonstrate how we
can use the proposed framework to define more stereotypes in the code repository and provide a detailed
analysis of the code coverage for our designed stereotype test code implementations.

& 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Nowadays, software agents are being used intensively in many
real-world applications especially the on-line control applications
which affect everyone's daily life, such as urban traffic signal
control systems (e.g., Khamis and Gomaa, 2012). Agents interact
in a concurrent, asynchronous and decentralized manner (Huget
and Demazeau, 2004), thus MAS are complex systems (Jennings,
2001). In addition, the behaviors of agents are non-deterministic
since there is a difficulty to determine a priori all interactions of an
agent during its execution. Consequently, software agents are
difficult to debug and test. As mentioned in Timm et al. (2006),
there are five approaches for testing MASs, those are: testing,
runtime monitoring, static analysis, model checking, and theorem
proofing. In the recent years, much effort has been made to
identify common interactions between agents and define their

design patterns (Tahara et al., 1999; Kolp et al., 2002, 2005).
However, defining standard test design patterns for these interac-
tions have not yet been implemented. In this paper, we extend
the original work presented in Nagi and Khamis (2011) that
specifically deals with the testing approach. Our aim is to let the
developer concentrate on testing the business logic of his/her MAS
rather than the underlying framework and the different interac-
tions between the participating agents. Thus, spare the developer
the burden of implementing tests for the underlying agent inter-
action patterns.

In Caire et al. (2004), the authors proposed the PASSI MAS
testing tool. This work presented diagrammatic notations to allow
the developers to move easily from the design phase towards the
implementation phase of the MASs. In addition, the authors
proposed pattern reuse, deployment of MASs, and testing activ-
ities; a database of agents/tasks patterns that could be tested. An
issue that needs to be addressed is testing the MAS at the society
level where a group of different agents interact and their social
behavior has to be evaluated. In Wang and Zhu (2012), the authors
proposed a specification-based test automation framework
through a tool called CATest for testing MAS. The correctness
of agents behaviors are automatically checked against formal
specifications. In Padgham et al. (2013), the authors presented a

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/engappai

Engineering Applications of Artificial Intelligence

0952-1976/$ - see front matter & 2013 Elsevier Ltd. All rights reserved.
http://dx.doi.org/10.1016/j.engappai.2013.04.009

☆In this paper, we extend the work published in Proceedings of the 5th
International Conference on Intelligent Systems and Agents (ISA 2011),
International Association for Development of the Information Society (IADIS).

n Corresponding author. Tel.: +20 3 309 4075, +20 100 638 2428 (mobile).
E-mail addresses: mohamed.khamis@ejust.edu.eg,

mohamed.abdelaziz.khamis@gmail.com (M.A. Khamis).

Engineering Applications of Artificial Intelligence 26 (2013) 2128–2142

www.elsevier.com/locate/engappai
www.elsevier.com/locate/engappai
http://dx.doi.org/10.1016/j.engappai.2013.04.009
http://dx.doi.org/10.1016/j.engappai.2013.04.009
http://dx.doi.org/10.1016/j.engappai.2013.04.009
http://crossmark.dyndns.org/dialog/?doi=10.1016/j.engappai.2013.04.009&domain=pdf
http://crossmark.dyndns.org/dialog/?doi=10.1016/j.engappai.2013.04.009&domain=pdf
http://crossmark.dyndns.org/dialog/?doi=10.1016/j.engappai.2013.04.009&domain=pdf
mailto:mohamed.khamis@ejust.edu.eg
mailto:mohamed.abdelaziz.khamis@gmail.com
http://dx.doi.org/10.1016/j.engappai.2013.04.009


model-based oracle generation method for unit testing belief–
desire–intention (BDI) agents.

In Nguyen et al. (2011), the authors provided a reference
framework with a classification of MAS testing levels (such as
unit, agent, integration, system, and acceptance); examples of unit
testing level are: Tiryaki et al. (2007), Zhang et al. (2008), and
Ekinci et al. (2009), whereas examples of agent testing level are:
Coelho et al. (2006), Nguyen et al. (2008b), and Gómez-Sanz et al.
(2009).

In Tiryaki et al. (2007), the authors proposed a test-driven MAS
development approach that supports iterative and incremental
MAS construction. In addition, they also introduced a testing
framework called SUnit which supports the proposed approach
by extending the JUnit framework. This framework allows the
developers to write automated tests for agent behaviors and
interactions between agents. The framework also includes the
necessary mock agents to model the organizational aspects of
the MAS.

In Coelho et al. (2007), the authors proposed the JAT framework
for building and running MASs test scenarios. This framework
relies on the use of aspect-oriented techniques to monitor the
autonomous agents during tests and control the test input of
asynchronous test cases. The proposed tool has been developed
on top of the JADE development framework. In order to reduce
the cost of developing a set of mock agents per test scenario, the
authors had developed a generative template-based approach for
mock agents, which generate the code of a mock agent from a
protocol specification defined in an XML file; hence, a developer
must define the communication protocol in an XML file, and
the mock agent generator will generate the code of the required
mock agent.

In Zhang et al. (2008), the authors enhanced the Prometheus
Design Tool (PDT) to allow the automated unit testing of agents.
Skeleton code can be generated from the detailed design of agents
in PDT. The code generated is in the JACK agent-oriented program-
ming language. The testing framework is based on model-based
testing where the testing is based on the design models of
the system. In Ekinci et al. (2009), the authors introduced a goal-
oriented testing approach. The paper proposed a new concept
called “test goal” for implementing unit tests; coding tests as goals
provides easy refactoring from test code to source code and vice
versa. The agent goals are the smallest testable units in the MASs.
In addition, the authors introduced the SEAUnit testing tool
which provides necessary infrastructure to support the proposed
approach.

In Coelho et al. (2006), the authors proposed to test the
smallest building block of the MAS, the agent. The aim of this
approach is to verify whether each agent in isolation respects its
specified tasks under successful and exceptional scenarios. A mock
agent is a regular agent that communicates with just one other
agent that is the agent under test (AUT). The plan of the mock
agent is equivalent to a test script, since it defines the messages
that should be sent to the AUT and asserts the messages that
should be received from it.

In Nguyen et al. (2008a), the authors introduced the eCAT tool
which supports deriving test cases semi-automatically from goal-
based analysis diagrams, generates test inputs based on agent
interaction ontology, and executes test cases automatically and
continuously on MAS. The eCAT tool has been implemented as an
Eclipse plug-in. It supports testing agents implemented in JADE
and JADEX development frameworks.

In Nguyen et al. (2008b), the authors investigated software
agents testing, and particularly the test generation automation.
This approach takes the advantage of agent interaction ontologies
which defines content semantic of those interactions to: (1) gen-
erate test inputs, (2) guide the exploration of the input space

during generation, and (3) verify messages exchanged among
agents with respect to the defined interaction ontology. The
proposed approach is integrated into the eCAT testing framework.

In Gómez-Sanz et al. (2009), the authors introduced advances
on the INGENIAS agent development framework towards a com-
plete coverage of testing and debugging activities.

In our work, we design test patterns for the ten most famous
MAS interaction design patterns found in the literature. We design
and implement an Eclipse plug-in to enable the MAS unit test
developer to generate the mock agent(s) that interact with the AUT
and follow one of the identified social design patterns (the term
‘social design patterns’ is defined in details in Section 2.2). The AUT
and the mock agents run within the JADE Platform (Bellifemine
et al., 2005). The MAS unit test developer has the ability to
add further test design patterns for an existing agent interaction
pattern or for a newly identified one. By this way, the MAS
developer will focus on testing the business logic of the MAS
without the burden of implementing unit tests for the design
pattern itself. The proposed framework provides the first imple-
mentation that usually triggers the continuous refactoring process
that is typical to the TDD paradigm. The developer can use the
reflection capabilities of the Eclipse SDK to reflect the changes
made in the AUT directly into the generated mock agent. The
repository consists of a set of XML and java files that represent the
behavior of the different mock agents existing in the implemented
design patterns. In our work, we provide implementations for a
vast majority of the agent design patterns. We evaluate the code
coverage by using EMMA (Roubtsov, 2006), a code coverage tool,
to demonstrate that the generated test files (mock agent, asso-
ciated resource files, and AUT test cases) completely cover the AUT
code for the agent interaction pattern.

The remainder of this paper is organized as follows. Section 2
presents background on the MAS unit testing approach based on
mock agents. Section 3 illustrates the details of the contribution
through the detailed design of our framework that is used in
designing mock agents-based test cases. Section 4 presents the
design of the test design patterns. Section 5 analyzes the quanti-
tative results using the EMMA code coverage tool. Finally, Section
6 presents some conclusions and directions for future work.

2. Background

2.1. MAS unit testing approach using mock agents

We adopted the MAS testing approach presented in Coelho
et al. (2006). This agent unit testing approach has two main
concerns: using mock agents in test case design and executing
the test case. These two concerns are analyzed in Coelho et al.
(2006) and are summarized below. A complete testing for a MAS is
almost impossible such that all agents specifications need to be
verified, thus designing a proper test-cases is a challenging task.
The aim is to make the designed test cases as complete as possible
by choosing the subset from all possible test cases that will likely
detect the most errors. The choice of this subset is definitely
constrained by time and space complexities (the test-case design
paradigm of the lowest effect would be choosing a random subset
from all possible test cases that would have a low chance to detect
the most errors).

To the best of the authors' knowledge, the unit testing appro-
aches for MAS proposed in the literature do not define a metho-
dology for test-case selection. However, in the work presented in
Myers (2004), the author suggests a test-case design paradigm
that is based on an error-guessing technique. This technique is
based on enumerating a list of possible error-prone situations and

M.A. Khamis, K. Nagi / Engineering Applications of Artificial Intelligence 26 (2013) 2128–2142 2129



Download English Version:

https://daneshyari.com/en/article/380754

Download Persian Version:

https://daneshyari.com/article/380754

Daneshyari.com

https://daneshyari.com/en/article/380754
https://daneshyari.com/article/380754
https://daneshyari.com

