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a b s t r a c t

Evolutionary algorithms (EAs) are fast and robust computation methods for global optimization, and
have been widely used in many real-world applications. We first conceptually discuss the equivalences of
various popular EAs including genetic algorithm (GA), biogeography-based optimization (BBO), differ-
ential evolution (DE), evolution strategy (ES) and particle swarm optimization (PSO). We find that the
basic versions of BBO, DE, ES and PSO are equal to the GA with global uniform recombination (GA/GUR)
under certain conditions. Then we discuss their differences based on biological motivations and
implementation details, and point out that their distinctions enhance the diversity of EA research
and applications. To further study the characteristics of various EAs, we compare the basic versions and
advanced versions of GA, BBO, DE, ES and PSO to explore their optimization ability on a set of real-world
continuous optimization problems. Empirical results show that among the basic versions of the
algorithms, BBO performs best on the benchmarks that we studied. Among the advanced versions of
the algorithms, DE and ES perform best on the benchmarks that we studied. However, our main
conclusion is that the conceptual equivalence of the algorithms is supported by the fact that algorithmic
modifications result in very different performance levels.

& 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Evolutionary algorithms (EAs) (Schwefel, 1995; Whitley, 2001;
Yao et al., 1999) such as the genetic algorithm (GA) (Reeves and
Rowe, 2003; Vose, 1999), biogeography-based optimization (BBO)
(Ma, 2010; Simon, 2008), differential evolution (DE) (Das and
Suganthan, 2011; Storn and Price, 1997), evolution strategy (ES)
(Arnold and Beyer, 2001; Beyer, 1994) and particle swarm optimi-
zation (PSO) (Bratton and Kennedy, 2007; Kennedy and Eberhart,
1995; Kennedy, 1997) have received much attention regarding
their potential as global optimization methods in real-world
applications. Inspired by natural evolution and survival of the
fittest in the biological world, EAs are search methods that are
different from traditional optimization techniques, and are based
on a collective learning process within a population of candidate
solutions. In this paper we often use the shorthand term solution
to refer to a candidate solution. The population in EAs is usually
arbitrarily initialized, and each iteration (also called a generation)
evolves toward better and better solution regions by means of
randomized processes of selection (which is deterministic in some

algorithms), mutation, and recombination (which is omitted in
some algorithms). The environment delivers quality information
(fitness values for maximization problems, and cost values for
minimization problems) about candidate solutions. The solutions
with high fitness are selected to reproduce more often than those
with lower fitness. All solutions have a small mutation chance to
introduce innovation into the population. Each EA works on the
principles of a different natural phenomena. GA uses survival of
the fittest, BBO uses the migration behavior of species between
islands, DE uses vector differences of candidate solutions, ES uses
self-adaptive mutation rates, and PSO uses the foraging behavior
of birds. But all of these EAs have certain features in common, and
probabilistically share information between candidate solutions to
improve the solution fitness. This makes them applicable to all
kinds of optimization problems.

These EAs have been applied to many engineering optimization
problems and have proven effective for solving some specific
problems, including unimodal, multimodal, and deceptive optimi-
zation, constrained optimization, dynamic optimization, noisy
optimization, multi-objective optimization, and so on (Ahn,
2006; Chiong et al., 2012; Oltean, 2007). So they are becoming
increasingly popular tools to solve various hard optimization
problems. Now many efforts have also been devoted to compare
these algorithms to each other. Typically, such comparisons have
been based on artificial numerical benchmark problems. Most
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studies are to verify that one algorithm outperforms another
on a given set of benchmarks. However, there has not been much
comparative study of various EAs and their principles of operation.
Therefore, it is interesting to discuss and compare the character-
istics of popular EAs from the conceptual and algorithmic aspects.

The aim of this paper is to show the equivalences and
differences of various popular EAs, including GA, BBO, DE, ES and
PSO in a notional as well as in an experimental way. Because these
algorithms bear so many similarities due to their reliance on
organic evolution, it is not a surprising fact that these algorithms
have equivalences under certain conditions. In this study, we
formalize a general description of these algorithms and provide
detailed theoretical and empirical comparisons. This paper can
provide an appropriate overview of the strong similarities of these
algorithms to stimulate further discussions.

There has been much previous work comparing various EAs,
including comparisons between genetic algorithms, memetic
algorithms, particle swarm optimization, ant colony optimization,
and shuffled frog leaping (Elbeltagi et al., 2005); comparisons
between genetic algorithms and particle swarm optimization
(Eberhart and Shi, 1998); comparisons between genetic algorithms
and evolution strategies (Hoffmeister and Bäck, 1990); compar-
isons between memetic algorithms, tabu search, and ant colony
optimization (Merz and Freisleben, 1999); and many others (Gao,
2004; Lai et al.,1998; Settles et al., 2003). Those papers focus
mostly on the motivation behind the algorithms and differences in
performance on benchmarks or specific applications. In this paper
we add to the research literature by providing a more extensive
comparison, by focusing on similarities and differences between
algorithms, by including the recently developed BBO algorithm in
our comparison, and by focusing on differences in performance on
a larger and more recent set of benchmarks. The benchmarks we
study in this paper are recently-proposed real-world continuous
problems from the 2011 IEEE Congress on Evolutionary Computa-
tion (Das and Suganthan, 2010).

We note that there are many other popular EAs that we could
include in our comparison, including ant colony optimization
(ACO) (Dorigo et al., 2002; Dorigo and Gambardella, 1997),
artificial immune systems (AIS) (Hofmeyr and Forrest, 2000), and
artificial bee colony (ABC) optimization (Karaboga and Basturk,
2007). These algorithms may be similar to the five EAs that we
examine in this paper, but their similarity has not yet been
examined. We restrict our comparison to five algorithms due to
space constraints, and we leave the comparison of other algo-
rithms for future work. We chose the five algorithms that we did
because GA and ES are two of the basic and foundational
approaches to computer intelligence; DE is a mid-generation
addition to the EA family that has proven very successful; PSO
takes a fundamentally different approach as a swarm intelligence
algorithm; and BBO is a typical late addition to the family of EAs.
The five algorithms that we chose thus form a representative set
rather than a complete set.

The rest of this paper is organized as follows. Section 2 first
gives a brief overview of various basic EAs and analyzes their
equivalences, and then discusses both their differences and their
unique characteristics. Section 3 presents performance compar-
isons of the basic and advanced EAs on real-world application
benchmarks, and Section 4 gives conclusions and directions for
future research.

2. Equivalences and differences of EAs

This section first introduces various basic EAs, including GA,
BBO, DE, ES and PSO, and then conceptually analyzes their
equivalences under special conditions (Section 2.1). This section

then discusses their differences based on biologic motivations and
algorithmic details (Section 2.2).

2.1. Equivalences of EAs

2.1.1. Genetic algorithms
GAs are popular evolutionary algorithms which were intro-

duced as a computational analogy of adaptive biological systems.
They are modeled on natural selection in evolution. GAs use a set
of candidate solutions as a population, and use fitness functions to
evaluate these candidate solutions. In the process of evolution, the
candidate solutions are improved through selection, mutation and
recombination (crossover) operators, and then pass on the candi-
date solutions with the best fitness to the next generation. A
general description of one generation of a simple GA is given in
Algorithm I.

Algorithm I. A general description of one generation of a simple
GA, which is divided into four steps.

Select the best-fit solutions for reproduction
Breed new solutions through recombination (crossover) and
mutation operations

Evaluate the fitness of the new solutions
Retain the most fit solutions for the next generation

The simple GA described in Algorithm I is usually the one
applied to most problems presented to a GA. The new solutions are
obtained each generation by recombination and mutation. Prior to
its mutation an offspring is produced by recombining parent
solutions:

ykðsÞ ¼
yaðsÞ ðAÞ no recombination
yaðsÞ or ybðsÞ ðBÞ discrete
yaðsÞ þ αðybðsÞ−yaðsÞÞ ðCÞ intermediate

8><
>: ð1aÞ

ykðsÞ ¼
yaðsÞðsÞ or ybðsÞðsÞ ðDÞ global; discrete
yaðsÞðsÞ þ αðsÞðybðsÞðsÞ−yaðsÞðsÞÞ ðEÞ global; intermediate

(

ð1bÞ
where α and α(s) are contraction factors between 0 and 1, y is the
entire population of candidate solutions, a, b, a(s), and b(s) are
parent indices, k is the offspring index, and s is the decision
variable index of a candidate solution. For example, yk denotes the
kth offspring, and yk(s) is the sth decision variable of yk. For options
(A), (B), and (C), parent indices a and b are two randomly-selected
indices that are independent of decision variable index s, and
contraction factor α is also independent of s. For options (D) and
(E), a(s) and b(s) are randomly-selected indices that depend on
decision variable index s, and αðsÞ is a contraction factor that
depends on s.

By convention all parents in a population have the different
mating probabilities, namely, all parents are determined by
fitness-based selection, for example, roulette-wheel selection or
tournament selection. In the case of discrete recombination option
(B) in (1a), the sth decision variable of the offspring is chosen from
either of two parents, which may be interpreted as crossover with
a varying number of crossover points. In the case of intermediate
recombination option (C) in (1a), the sth decision variable of the
offspring is the weighted average of the two parents, and the
weighting coefficient is α. In the case of the global recombination
options (D) and (E) in (1b), a(s) and b(s) are chosen independently
for each decision variable index s, which means that many parents
can contribute to a single offspring. This results in a higher mixing
of genetic information than in the case of options (B) and (C).
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