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Recent years have seen a surge of interest in extending statistical regression to fuzzy data. Most of the

recent fuzzy regression models have undesirable performance when functional relationships are

nonlinear. In this study, we propose a novel version of fuzzy regression model, called kernel based

nonlinear fuzzy regression model, which deals with crisp inputs and fuzzy output, by introducing the

strategy of kernel into fuzzy regression. The kernel based nonlinear fuzzy regression model is identified

using fuzzy Expectation Maximization (EM) algorithm based maximum likelihood estimation strategy.

Some experiments are designed to show its performance. The experimental results suggest that the

proposed model is capable of dealing with the nonlinearity and has high prediction accuracy. Finally,

the proposed model is used to monitor unmeasured parameter level of coal powder filling in ball mill in

power plant. Driven by running data and expertise, a strategy is first proposed to construct fuzzy

outputs, reflecting the possible values taken by the unmeasured parameter. With the engineering

application, we then demonstrate the powerful performance of our model.

& 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Regression analysis is one of the most popular statistical
techniques enabling identification of functional relationship
between independent and dependent variables, when both the
independent and dependent variables are given as real numbers.
However, in many real-life situations, we cannot obtain such
standard observations and can only have fuzzy data. Therefore,
such real-life situations are quite often outside the scope of the
classical regression analysis (Bargiela et al., 2007), and the
classical regression should be extended to deal with fuzzy data.
Recent years emerge a surge of literatures about real applications
of various artificial intelligence techniques in different engineer-
ing fields (without claiming of completeness, see Refs. (Chau,
2006; Muttil and Chau, 2007; Cheng et al., 2002; Lin et al., 2006;
Jia et al., 2008; Xie et al., 2006). In this paper, we focus on the
fuzzy regression topic as well as its applications.

Originally, ‘‘classical’’ statisticians intuitively consider the
fuzzy data as ordinal data in an artificial way, e.g., by ‘‘1, 2, 3,
y’’ for a rating with respect to the precise scale. Then the
classical statistical regression can be directly applied. Such intui-
tion may induce some disadvantages, as remarked by Nather
(2006). In real sense, the fuzzy regression model was first

introduced by Tanaka et al. (1980, 1982). In recent years, there
is a growing literature that formalizes the linear regression model
in a fuzzy domain, in which model parameters and/or data are
fuzzy, or imprecise, or vague (without claiming of completeness,
for instance, see Refs. Bargiela et al., 2007; Celmins, 1987a, 1987b;
Chang, 2001; Chang and Ayyub, 2001; Chang and Lee, 1996;
Diamond and Tanaka, 1998; D’Urso, 2003; D’Urso et al., 2011;
Kacprzyk and Fedrizzi, 1992; Kim and Bishu, 1998; Korner and
Nather, 1998; Lee and Chen, 2001; Nather, 1994, 2006; Sakawa
and Yano, 1992; Wang and Tsaur, 2000).

There are two main approaches to fuzzy regression analysis.
The first one is the possibilistic approach introduced by Tanaka
et al. (1980, 1982). According to this approach, fuzzy regression
coefficients are estimated minimizing the fuzziness of the esti-
mated response variable, conditional to the constraint that each
estimated value lies within a given interval defined on the
observed values of the response variable. The second one is the
least-square (LS) approach (Celmins, 1987a, 1987b; Diamond,
1988; D’Urso et al., 2011), which extends the LS criterion to the
fuzzy setting. This estimation procedure consists in finding the
linear model which best approximates the observed data in a
given metric space, taking into account the fuzziness of the data.
For the interested reader, see Refs. (Celmins, 1987a, 1987b;
Chang, 2001; Chang and Ayyub, 2001; Diamond, 1988; Ming
et al., 1997; D’Urso and Gastaldi, 2000; D’Urso, 2003; D’Urso et al.,
2011).

In the above mentioned fuzzy regression models, the fuzzy
data are viewed implicitly or definitely as realizations of fuzzy
random variables. In the literature, there have been proposed two
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views of fuzzy data (Gebhardt et al., 1998). The first one assumes
the data to be intrinsically fuzzy and uses the mathematical
formalism of fuzzy random variables. The second one is based on
an epistemic interpretation of fuzzy data, which are assumed to
‘‘imperfectly specify a value that is existing and precise, but not
measurable with exactitude under the given observation condi-
tions’’. In the second viewpoint, a fuzzy datum is thus seen as a
possibility distribution associated to a precise realization of a
random variable that has been only partially observed. According
to such viewpoint, Denoeux (2011) proposes a new fuzzy regres-
sion model by using fuzzy EM algorithm. Denoeux’s model
provides a new and well motivated solution with very simple
interpretation. As will be shown, however, this model cannot deal
with the problem where the nonlinearity exists.

More recently, several issues have been addressed to the fuzzy
regression (Bargiela et al., 2007; Bisserier et al., 2010; Chan et al.,
2010; Kim et al., 2008; Nasrabadi and Hashemi, 2008), one of
which is the nonlinear problem. All the aforementioned
approaches are naturally linear or too complex to be used, and
thus cannot be used to or cannot be easily used to deal with
nonlinear problems. In practice real word systems are nonlinear
and complex. Therefore, it is desirable to propose a nonlinear
regression model dealing with fuzzy data. Nasrabadi and Hashemi
(2008) suggest a robust fuzzy regression extending the risk-
neutral model proposed by Modarres et al. (2004, 2005) to a
nonlinear fuzzy regression model using multilayered feed for-
ward neural networks where weights, biases, input and output
variables are assumed to be LR (Left and Right) type fuzzy. In
practical engineering, some process parameters, taken as the
independent variables (i.e., inputs), can usually be precisely
observed, and only the process parameter, taken as dependent
variable (i.e., output), can be imprecisely observed or monitored.
In such an example, the unmeasured parameter is defined in Refs.
(Su and Wang, 2009; Su et al., 2010). In addition, the model with
precise structure parameters is efficient and easy to be realized in
the view point of practice engineering. Therefore, Nasrabadi and
Hashemi’s model is inefficient in such case.

With the above short review, we can see that there is no
simple way used to deal with nonlinear fuzzy regression problem
where inputs and model structure parameters are crisp but
output is fuzzy. In this study, we focus on such topic. The main
contribution of this study is that, a novel version of nonlinear
fuzzy regression model, called kernel based nonlinear fuzzy
regression model, is proposed by introducing the strategy of
kernel into Denoeux’s model. This model can deal with regression
problems where nonlinearity exists and it has high prediction
accuracy and is easily to be implemented in practice.

The rest of paper is organized as follows. Section 2 briefly
introduces the maximum likelihood estimation strategy based on
fuzzy EM algorithm. Section 3 proposes the kernel based non-
linear fuzzy regression model with two numerical experiments.
Section 4 presents a practical engineering application of the
proposed nonlinear fuzzy regression model in power plant.
Section 5 concludes the paper.

2. Fuzzy EM algorithm based maximum likelihood estimation
strategy

In this section, we briefly recall the preliminary foundations
for the consequent work in this paper. The interested reader may
refer to article (Denoeux, 2011) for a thorough treatment on the
subject. To format the expressions in sequel, we admit the
following nomenclature: capital letter in bold denotes matrix,
lowercase letter in bold denotes column vector, italic letter
denotes scalar variable, and letter with hat ‘‘� ’’ denotes fuzzy

number. Without confusion, the italic capital letter is used to
indicate random vector variable.

Let X, referred to as the complete-data vector, be a random
vector, taking value in sample space X and describing the result of
a random experiment. The probability density function (p.d.f.) of
X is denoted by g(x, w), where w¼(c1, c2, y, cd)T is a column
vector of unknown parameters with parameter space O, where
superscript ‘‘T’’ indicates transposition.

If x, a realization of X, is known exactly, we could compute the
maximum likelihood estimate (MLE) of w as any value maximiz-
ing the complete-data likelihood function:

Lðw;xÞ ¼ gðx;wÞ ð1Þ

However, x is usually not observed precisely, e.g., only partial
information about x is available in the form of a fuzzy subset ~x of X .
Therefore, the complete-data likelihood function (1) should be
extended. Given ~x and assume its membership function to be the
Borel measurable, the probability of fuzzy set ~x can be computed
according to Zadeh’s definition of the probability of a fuzzy event
(Zadeh, 1968). Thus, the observed-data likelihood in the imprecise
setting can then be defined as.

Lðw; ~xÞ ¼ Pð ~x;wÞ ¼

Z
w
m ~x ðxÞgðx;wÞdx ð2Þ

In the special case where the complete data x¼(x1, x2, y, xn)T

is a realization of an independent identically distributed (i.i.d.)
random vector X¼(X1, X2, y, Xn)T, and assuming the joint
membership function m ~x to be decomposed in the product of
m ~xi

(i¼1, 2, y, n), i.e.,

m ~x ðxÞ ¼
Yn

i ¼ 1

m ~xi
ðxiÞ ð3Þ

the likelihood function (2) can be written as a product of n items:

Lðw; ~xÞ ¼
Yn

i ¼ 1

Z
m ~xi
ðxÞgðx;wÞdx ð4Þ

and the observed-data log likelihood is:

logLðw; ~xÞ ¼
Xn

i ¼ 1

log

Z
m ~x i
ðxÞgðx;wÞdx ð5Þ

The fuzzy EM algorithm approaches the problem of maximiz-
ing the observed-data log likelihood logL(w, ~x) by proceeding
iteratively with the complete-data likelihood logL(w, x)¼ logg(x, w).
Each iteration of the fuzzy EM algorithm involves two steps called
the expectation step (E-step) and the maximization step (M-step).

The E-step consists in the calculation of

Q ðw,wðqÞÞ ¼ EwðqÞ ðlog Lðw;xÞ
� �

9 ~xÞ ¼

R
m ~x log½Lðw; xÞ�gðx,wðqÞÞdx

LðwðqÞ; ~xÞ
ð6Þ

where the expectation of logL(w, X) is taken with respect to the
conditional p.d.f. of x given ~x, using parameter vector w(q):

gðx9 ~x;wðqÞÞ ¼
m ~x ðxÞgðx9w

ðqÞ
ÞR

m ~x ðuÞgðu9w
ðqÞ
Þdu

The M-step requires the maximization of Q(w, w(q)) with
respect to w over the parameter space O, i.e., finding such that

Q ðwðqþ1Þ,wðqÞÞZQ ðw,wðqÞÞ, wAO

The fuzzy EM algorithm alternately repeats the E- and M-steps
above until the increase of observed-data likelihood becomes
smaller than some threshold.
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