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a b s t r a c t

This paper presents an annealing dynamical learning algorithm (ADLA) to train wavelet neural

networks (WNNs) for identifying nonlinear systems with outliers. In ADLA–WNNs, wavelet-based

support vector regression (WSVR) is adopted to determine the initial translation and dilation of a

wavelet kernel and the weights of WNNs due to the similarity between WSVR and WNNs. After

initialization, ADLA with nonlinear time-varying learning rates is applied to train the WNNs. In the

ADLA, the determination of the learning rates would be a key work for the trade-off between stability

and speed of convergence. A computationally efficient optimization method, particle swarm optimiza-

tion (PSO), is adopted to find the optimal learning rates to overcome the stagnation in the training

procedure of WNNs. Due to the advantages of WSVR and ADLA (WSVR–ADLA), the WSVR-based

ADLA–WNNs (WSVR–ADLA–WNNs) can robust against outliers and achieve the promising efficiency of

system identifications. Three examples are simulated to confirm the performance of the proposed

algorithm. From the simulated results, the feasibility and superiority of the proposed WSVR–ADLA–

WNNs for identifying nonlinear systems with artificial outliers are verified.

& 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Identification of nonlinear systems can be found in various
industries (Elfelly et al., 2010; Fu et al., 2009; Johnson et al., 2009;
Lendaris, 2009; Luitel and Venayagamoorthy, 2010; Manel et al.,
2006; Rouss and Charon, 2008; Vieira et al., 2005). However, it
should point out that structural identification and parameter
estimation of nonlinear systems are rather difficult issues in
system identification. For scientific and engineering applications,
the obtained training data are always subject to outliers. The
intuitive definition of an outlier (Hawkins, 1980) is ‘‘an observa-
tion which deviates so much from other observations as to arouse
suspicions that it is generated by a different mechanism’’.
Generally, outliers may occur due to various reasons, such as
erroneous measurements or noisy data from the tail of noise
distribution functions. Recently, many researchers have endea-
vored to investigate the issue of identifying nonlinear systems
with outliers (Chuang et al., 2000, 2002, 2004; Fu et al., 2010; Jeng
et al., 2010; Lee et al., 1999; Swanchez, 1998).

Neural networks (NNs) are extensively used for approximating
functions due to its simplicity and faster convergence (Ait
Gougam et al., 2008; Azadeh et al., 2007; Chuang et al., 2002;
Muzhou and Xuli, 2011; Narendra, 1990; Yang et al., 2011). Since

NNs approximate functions without requiring a mathematical
description of how outputs functionally depend on inputs, they
are often referred to as model-free estimators (Kosko, 1992). The
basic modeling philosophy of model-free estimators is that they
learn from examples without any knowledge of the model type.
When outliers exist in the training data, there still have some
problems in the traditional NNs approaches. Hence, robust NNs
are proposed to overcome the problems of the traditional NNs
while facing outliers. These robust approaches could indeed
improve the learning performance when training data contain
outliers (Chuang et al., 2000, 2002, 2004; Fu et al., 2010; Lee et al.,
1999).

In last decade, some researchers have developed the structure
of NNs based on the wavelet functions to construct wavelet
neural networks (WNNs) (Billings and Wei, 2005; Subasi et al.,
2005; Tzeng, 2010; Wei et al., 2010; Wu and Chan, 2009; Xu and
Ho, 2002). The WNNs are constructed based on the wavelet
transform theory (Zhang and Benveniste, 1992). Wavelet decom-
position is a powerful tool for function approximation using a
wavelet function (Chui, 1992). Unlike the functions used in the
conventional NNs, wavelet functions are spatially localized, so
that the learning capability of the WNNs is more efficient than the
conventional NNs. When utilizing WNNs, the number of wavelet
layer nodes, the initial parameters of the kernel, and the initial
weights of the networks must be determined first. These para-
meters are usually determined according to the experience of the
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designer or are just chosen randomly. However, improper initi-
alization usually results in slow convergence speed and poor
performance of WNNs.

The support vector machine (SVM) is a new universal learning
machine proposed by Vapnik in 1995, which is applied to both
regression and pattern recognition (Min and Cheng, 2009;
Schölkopf et al., 2000; Trafalis and Gilbert, 2006; Zhang et al.,
2010). Due to the excellent performance of SVM and the approx-
imating ability of wavelet kernel function, several researchers
have combined wavelet and SVM (WSVM) to apply to investiga-
tion (Fernandez, 2007; Wang and Fu, 2010; Zhang et al., 2004,
2005). In WSVM, a regression method (WSVR) with wavelet
kernel function is usually adopted to determine the initial
structures of WNNs. After initialization, an annealing robust
learning algorithm (ARLA) is applied to train the WNNs. In ARLA,
a learning rate serves as an important role in the training
procedure. In general, the learning rate is selected as a time-
invariant constant by trial and error (Chuang et al., 2004; Fu et al.,
2009, 2010; Hsieh et al., 2008; Lin, 2006). However, there still
exist several problems of unstable or slow convergence. Some
researchers have engaged in exploring the learning rate to
improve the stability and the speed of convergence (Hsieh et al.,
2008; Song et al., 2008; Yoo et al., 2007; Yu, 2004).

In this paper, annealing dynamical learning algorithm (ADLA)
is proposed to overcome the stagnation in searching a globally
optimal solution or the drawback of slow convergence of training
WSVR-based WNNs for identifying nonlinear systems with
outliers. That is, first, WSVR method is used to determine the
initial translation and dilation of a wavelet kernel and the
structures of WNNs (i.e. the proper number of wavelet layer
nodes, the parameters of wavelet kernel function, and the synaptic
weights). Then, the ADLA based on nonlinear time-varying learn-
ing rates is then applied to adjust the parameters of wavelet kernel
and the synaptic weights for improving learning performance, in
which a popular optimization approach, PSO, is adopted to find
optimal learning rates. Finally, three simulation examples are
illustrated to show the performances of the WSVR–ADLA–WNNs.
From the simulated results, the proposed WNNs have the super-
iority over the conventional WNNs using fixed learning rates for
identifying nonlinear systems with artificial outliers are verified.

2. WNNs for identification of nonlinear systems

The WNNs are constructed based on the wavelet transform
theory and are alternatives of feed forward neural networks for
identifying arbitrary nonlinear systems.

2.1. Structure of wavelet neural networks model

Using a multi-resolution analysis (MRA), the wavelet trans-
form expands a signal or function onto a set of wavelet basis
function (Daubechies, 1992; Mallat, 1989). The basis function
Ca,b(x) can be derived from a mother wavelet C(x) through
translations and dilations as

Ca,bðxÞ ¼
1ffiffiffi
a
p C

x�b

a

� �
ð1Þ

where aAR, a40 and bARd, a is the dilation and b is the
translation. The normalization factor

ffiffiffi
a
p

in (1) ensures that
Ca,b(x) has a constant norm in the space of square integrable
functions. Then, an approximation of f(x)AL2(R) can be regarded
as a linear combination of wavelets (Chui, 1992), it is expressed as

~f ðxÞ ¼
Xm

j ¼ 1

wjCaj ,bj
ðxÞ ð2Þ

where ~f ðxÞ is the approximation of the function f(x) and wj is the
weight of the jth wavelet.

Wavelet functions have efficient time-frequency localization
properties. The wavelets have been applied in various research
fields due to the capability of decomposing signals (Zhang, et al.,
1995; Zhang and Benveniste, 1992). Based on the properties of
good learning ability of NNs, combining wavelets with neural
networks (NNs), wavelet neural networks (WNNs) have been
dramatically developed (Muzhou and Xuli, 2011; Subasi et al.,
2005; Wei et al., 2010; Wu and Chan, 2009; Yilmaz and Oysal,
2010; Zhang, 1997).

Generally, WNNs has a three-layered network structure that
consists of input, wavelet, and output layers depicted in Fig. 1.
The semantic meaning and operation function of the nodes in
each layer are described as follows:

Layer 1 (input layer): In this layer, the input data x¼[x1, x2, y,
xn] are directly transmitted into the wavelet layer, wher n is the
number of nodes; namely, the number of input variables.

Layer 2 (wavelet layer): In this layer, Morlet wavelet function
(Zhang et al., 2004) is adopted as the activation function of the
wavelet nodes connected with the input data is expressed as

mjðxiÞ ¼ cos 1:75�
xi�bj

aj

� �
exp �

ðxi�bjÞ
2

2a2
j

 !
for i¼ 1,2,. . .,n, j¼ 1,2,. . .,r

ð3Þ

where aj and bj are the dilation and the translation of the jth
wavelet function for the ith input variable xi, respectively. The
product of the jth multi-dimensional wavelet with n input
dimensions of xi is defined as

cjðxÞ ¼
Yn

i ¼ 1

mjðxiÞ ¼
Yn

i ¼ 1

cos 1:75�
xi�bj

aj

� �
exp �

ðxi�bjÞ
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j
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for j¼ 1,2,. . .,r:

ð4Þ

Layer 3 (output layer): According to the theory of MRA
(Daubechies, 1992), the kth output of the WNNs using a linear
combination of wavelets at different resolution levels is repre-
sented as

ŷk ¼
Xr

j ¼ 1

yjk ¼
Xr

j ¼ 1

wjkcj

¼
Xr

j ¼ 1

wjk

Yn

i ¼ 1
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xi�bj
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exp �

ðxi�bjÞ
2

2a2
j

 !
k¼ 1,2,. . .,p: ð5Þ

2.2. WNNs-based identification of nonlinear systems

In general, an unknown nonlinear system can be expressed as

yðtþ1Þ ¼ f ðyðtÞ,yðt�1Þ, � � � ,yðt�nyÞ,uðtÞ,uðt�1Þ, � � � ,uðt�nuÞÞ ð6Þ

Fig. 1. Structure of WNNs that consists of input, wavelet, and output layers.
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