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In this paper, we present a max-plus algebraic modeling and control approach for cyclically operated

high-throughput screening plants. In previous work an algorithm has been developed to determine the

globally optimal solution of the cyclic scheduling problem. The obtained optimal schedule is modeled

in a max-plus algebraic framework. The max-plus algebraic model can then be used to generate

appropriate control actions to handle unexpected deviations from the predetermined cyclic operation

during runtime.

& 2010 Elsevier Ltd. All rights reserved.

1. Introduction

Until the early 1990s the search for new pharmaceutical ingre-
dients was performed manually. This was an extremely time-con-
suming procedure lasting for months or even years. Through advances
in robotics and high-speed computer technology, it was possible to
develop systems that are able to automatically screen thousands
of substances in a very short time. The procedure of automatically
analyzing biochemical compounds is called high-throughput screening

(HTS). Nowadays HTS systems play an important role in the pharma-
ceutical industries, but they are also relevant to other fields of biology
and chemistry.

A batch in HTS subsumes all worksteps that are necessary to
analyze one set of substances. The set of substances is aggregated on
one microplate. Additional microplates may be included in the batch
to convey reagents or waste material. The plates are automati-
cally moved between the resources of the HTS system, which include
readers, incubators, and pipettors. To be able to compare many diff-
erent batches of an experiment, each batch has to follow an identical
pattern within the system, in terms of timing as well as in terms of
ordering of resources. Thus, the system has to be operated cyclically.
The aim of maximizing the throughput of the system results in a cyclic
scheduling problem. An overview on cyclic scheduling can be found
in, e.g., Hanen (1994) and Hanen and Munier (1995).

A method to determine the globally optimal schedules for cyclic
systems, such as HTS systems, has been introduced by Mayer and
Raisch (2004). This approach is based on discrete-event systems

modeling, i.e., the system is characterized by the occurrence of
discrete changes or events. More specifically, the model is given as a
time window precedence network. Using standard graph reduction
methods, the complexity of this network can then be reduced.
The procedure ensures that the globally optimal solution of the
scheduling system is not cut off. Another important step in the
proposed method is the transformation of the resulting mixed
integer non-linear program (MINLP) into a mixed integer linear
program (MILP). Although these steps decrease the complexity of the
system significantly, the scheduling problem is still too complex to be
performed on-line. Therefore, the algorithm is carried out off-line
before the execution of the HTS systems starts, i.e., it determines a
static schedule. Static schedules, however, do not perform well when
deviations from the predetermined cyclic scheme occur during
runtime (Murray and Anderson, 1996).

To handle such deviations, we propose a supervisory control
scheme using a max-plus algebraic model of the HTS system. The
model is based on the specific operation the user wants to run as well
as on the globally optimal cyclic schedule determined off-line. In case
of a deviation from the cyclic scheme, the supervisor generates
possible actions to be taken, i.e., the controller updates the schedule of
the HTS plant and thus ensures continuous operation.

This paper is structured as follows. Section 2 summarizes the
necessary concepts from graph theory and max-plus algebra. The
different constraints for high-throughput screening systems are
explained in Section 3. It is described how the constraints are merged
into a max-plus algebraic model of the optimal HTS operation. In
Section 4, a max-plus algebraic control scheme introduced for cyclic
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systems by Li et al. (2007) is adapted for HTS systems. Conclusions and
suggestions for future work are given in Section 5.

2. Graph theory and max-plus algebra

2.1. Graph theory

A directed graph (or digraph) is a pair ðV,EÞ, where V is the set of
nodes or vertices, and EDV � V is a set of ordered pairs of nodes,
called edges or arcs. A weighted graph is a digraph with a real number
(the weight) wjiAR assigned to each arc ðvi,vjÞAE. It can be
represented by a matrix WARn�n

max , with Rmax ¼R [ f�1g and n

being the total number of nodes in the graph. The entries of the matrix
W represent the weights of arcs. If no arc exists from node vi to node vj

a weight of �1 is assigned to wji. ðV,EÞ, together with the weight
function w : E-R, is then called the precedence graph of W. If the
weights wjiARmax represent times, the corresponding weighted
digraph will also be referred to as a time window precedence network.
Then, nodes represent events and arcs represent minimum time
offsets between the occurrence of events.

2.2. Max-plus algebra

Max-plus algebra (e.g., Baccelli et al., 2001; Heidergott et al.,
2006) is a powerful tool for the analysis and simulation of a certain
class of discrete-event systems and provides a compact represen-
tation of such systems. It consists of two operations,� and� on the
set Rmax ¼R [ f�1g. The operations are defined by: 8a,bARmax:

a� b¼maxða,bÞ,

a� b¼ aþb:

The operation � is called addition of the max-plus algebra, the
operation � is called multiplication of the max-plus algebra. The
neutral element of max-plus addition is �1, also denoted as e.
The neutral element of multiplication is 0, also denoted as e.

For matrices A,BARn�m
max max-plus addition is defined by

½A� B�ji ¼ ½A�ji � ½B�ji:

The matrix product A� B for matrices AARn�l
max and BARl�m

max is
defined by

½A� B�ji ¼ "
l

k ¼ 1
ð½A�jk � ½B�kiÞ ¼ max

k ¼ 1,...,l
f½A�jkþ½B�kig:

Similar to conventional algebra, some standard properties, such as
associativity and commutativity for� and�, and distributivity of�
over �, hold for the max-plus algebra.

The earliest time instants for the occurrence of events in a timed
precedence graph are determined by linear equations in the max-
plus algebra. In particular, if we distinguish external (input and
output) and internal events,

x¼ A0 � x� B� u,

y¼ C � x,

where the vectors x, u and y contain the earliest time instants for
the occurrence of the internal, the input and output events,
respectively. Note that only the instants of the occurrence of input
events, i.e., only the elements in u, can be delayed directly by a
controller. The elements of matrix A0 represent the minimum time
offsets between the internal events. If the corresponding graph
does not contain any circuits, matrix A0 is said to be acyclic. In this
case the matrix A�0 ¼ I � A0 � A2

0 � � � � can be determined as
A�0 ¼ I � A0 � A2

0 � � � � � An�1
0 , where I is the identity matrix with

respect to max-plus algebra. For acyclic system matrices A0, the
implicit representation of the system can be rewritten in an explicit

form:

x¼ A�0 � B� u,

y¼ C � x:

For cyclically repeated systems, the max-plus model has to be
extended such that dependencies of events belonging to different
cycles can be included. For systems that are causal with respect to
the cycle index, an event in cycle k can only depend on events in the
same cycle or in previous cycles. Thus, the recurrence relation for
such systems can formally be written as

xðkÞ ¼ "
qAN0

ðAq � xðk�qÞÞ � B� uðkÞ,

yðkÞ ¼ C � xðkÞ,

with kAZ. This implicit recurrence relation can be rewritten in
explicit form if the matrix A0 is acyclic:

xðkÞ ¼"
q
ðA�0Aq � xðk�qÞÞ � A�0B� uðkÞ,

yðkÞ ¼ C � xðkÞ,

with kAZ and qAN.

2.3. Min-plus algebra

As mentioned in the previous section, max-plus algebra can be
used to determine the earliest possible time instants for the
occurrences of events in a timed precedence graph. However, it
may not always be desirable that an event occurs as early as
possible. From a scheduling point of view it is often desired that
events occur just in time, i.e., the occurrence of some events shall be
delayed as much as possible without interfering with the through-
put of the system. The so-called latest necessary event times can be
determined with min-plus algebra. Similar to max-plus algebra,
min-plus algebra consists of two operations, �u and �u defined on
the set Rmin ¼R [ fþ1g, 8a,bARmin:

a�u b¼minða,bÞ,

a�u b¼ aþb:

The operations are called addition and multiplication of the min-
plus algebra. The neutral element of min-plus addition is eu¼ þ1
and the neutral element of multiplication is eu¼ 0.

The standard properties of max-plus algebra, e.g., associativity
and commutativity, also hold for min-plus algebra. The matrix
operations for min-plus algebra can be directly derived form max-
plus algebra by using �u, �u, eu, and eu instead of �, �, e, and e.

3. Max-plus model of HTS systems

An HTS plant is assumed to consist of m resources. According to
the operation the user wants to run, the sequence of activities for a
single batch is given. It consists of m activities and each activity i is
assigned to one of the resources, denoted by JiAf1, . . . ,mg, where it
is executed. During the execution of activity i the respective
resource Ji is said to be occupied. Different activities of a batch
may overlap in time. Thus, a microplate may occupy two resources
at the same time, e.g., during the transfer from one resource to
another one. However, we assume all resources to have capacity
one, i.e., no activity can allocate a resource while this resource is
occupied by another activity.

One possibility to model temporal dependencies between
events within a batch is through a time window precedence
network. To do this, three different events have to be considered:
start events oi denoting the start of activity i, release events ri
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