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a b s t r a c t

A novel data-model-fusion prognostic framework is developed in this paper to improve the accuracy of

system state long-horizon forecasting. This framework strategically integrates the strengths of the

data-driven prognostic method and the model-based particle filtering approach in system state

prediction while alleviating their limitations. In the proposed methodology, particle filtering is applied

for system state estimation in parallel with parameter identification of the prediction model (with

unknown parameters) based on Bayesian learning. Simultaneously, a data-driven predictor is employed

to learn the system degradation pattern from history data so as to predict system evolution (or future

measurements). An innovative feature of the proposed fusion prognostic framework is that the

predicted measurements (with uncertainties) from the data-driven predictor will be properly managed

and utilized by the particle filtering to further update the prediction model parameters, thereby

enabling markedly better prognosis as well as improved forecasting transparency. As an application

example, the developed fusion prognostic framework is employed to predict the remaining useful life of

lithium ion batteries through electrochemical impedance spectroscopy tests. The investigation results

demonstrate that the proposed fusion prognostic framework is an effective forecasting tool that can

integrate the strengths of both the data-driven method and the particle filtering approach to achieve

more accurate state forecasting.

& 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Condition-based maintenance is a program that recommends
maintenance decisions based on the information collected
through system condition monitoring (or system state estima-
tion) and equipment failure prognostics (or system state fore-
casting), in which prognostics still remains as the least mature
element in both research and real-world applications (Jardine
et al., 2006). Prognostics entails the use of the current and
previous system states (or observations) to predict the future
states of a dynamic system. Reliable forecast information can be
used to schedule repairs and maintenance in advance and provide
an alarm before faults reach critical levels so as to prevent
machinery performance degradation, malfunction, or even cata-
strophic failures (Liu et al., 2009).

In general, prognostics can be conducted using either data-
driven methods or model-based approaches. Data-driven meth-
ods use pattern recognition and machine learning to detect
changes in system states (Yagiz et al., 2009; Gupta and Ray,
2007). The classical data-driven methods for nonlinear system
prediction include the use of stochastic models such as the
autoregressive (AR) model, the threshold AR model (Tong and
Lim, 1980), the bilinear model (Subba, 1981), the projection
pursuit (Friedman and Stuetzle, 1981), the multivariate adaptive
regression splines (Friedman, 1991), and the Volterra series
expansion (Brillinger, 1970). Since the last decade, more research
interests in data-driven system state forecasting have been
focused on the use of flexible models such as various types of
neural networks (NNs) (Atiya et al., 1999; Liang and Liang, 2006)
and neural fuzzy (NF) systems (Husmeier, 1999; Korbicz, 2004;
Jang, 1993). Data-driven methods rely on past patterns of the
degradation of similar systems to project future system states;
their forecasting accuracy depends on not only the quantity
but also the quality of system history data, which could be a
challenging task in many real applications (Liu et al., 2009;
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Wang and Vrbanek, 2008). Another principal disadvantage of
data-driven methods is that the prognostic reasoning process is
usually opaque to users (Tse and Atherton, 1999); consequently,
they are not suitable for some advanced applications where
forecast reasoning transparency is required (e.g., credit card
cheating, earthquake and stock market prediction).

Model-based approaches typically involve building models
(or mathematical functions) to describe the physics of the system
states and failure modes; they incorporate physical understand-
ing of the system into the estimation of system state and/or
remaining useful life (RUL) (Adams, 2002; Luo et al., 2003;
Chelidze and Cusumano, 2004). Model-based approaches, how-
ever, may not be suitable for many industrial applications where
the physical parameters and fault modes may vary under differ-
ent operation conditions (Pecht and Jaai, 2010). On one hand, it is
usually difficult to tune the derived models in situ to accommo-
date time-varying system dynamics. On the other hand, model-
based approaches cannot be used for complex systems whose
internal state variables are inaccessible (or hard) to direct
measurement using general sensors. In this case, inference has
to be made from indirect measurements using techniques such as
particle filtering (PF). The PF-based approaches have been used
for prognostic applications (Saha et al., 2009), in which the PF is
employed to update the nonlinear prediction model and the
identified model is applied for system state forecasting. However,
a limitation associated with the classical PF-based predictors is
that the prediction model parameters cannot be updated during
the prognostic period since no new measurements are available.
The prediction accuracy could be low in many applications
because the identified model during the state estimation period
may not be accurate and robust.

To address the aforementioned challenges, a data-model-
fusion framework is proposed in this work for system state
prognostics. The developed framework aims to integrate the
strengths of the data-driven prognostic method and the model-
based PF approach for a more reliable system state forecasting.
The proposed fusion framework is new in the following aspects:
(1) the prediction uncertainties from the data-driven predictor
can be properly managed and utilized through the fusion frame-
work so as to further update the prediction model parameters;
(2) the fusion prognostic framework can overcome the aforemen-
tioned limitations of both the data-driven method and the model-
based PF approach so as to make prediction models more
interpretable and transparent; (3) as an application example,
the developed fusion prognostic framework is implemented for
the RUL prediction of lithium-ion batteries.

This paper is organized as follows. The proposed fusion
prognostic framework is described in Section 2. The effectiveness
of this fusion framework is demonstrated in Section 3 via an
application in battery RUL prediction. A summary of important
observations and conclusive remarks are given in Section 4.

2. The fusion prognostic framework for dynamic system state
forecasting

In this section, we first briefly discuss two principal compo-
nents of the proposed fusion prognostic framework: the data-
driven prognostic method and the PF-based prognostic approach.
The limitations of each component will be examined, which,
in turn, motivates the advanced research of this work. The
fusion prognostic framework will then be described. This frame-
work aims to integrate the advantages of both the data-driven
predictor and the PF approach while alleviating their respective
limitations, so as to develop a more reliable system state fore-
casting paradigm.

2.1. The data-driven prognostic method

Data-driven predictors employ pattern recognition and
machine learning to forecast changes in system states (Yagiz
et al., 2009; Gupta and Ray, 2007). Since the last decade, more
research interests in data-driven system state forecasting have
shifted to the use of flexible models such as NNs (Atiya et al.,
1999; Husmeier, 1999), NF systems (Jang, 1993), and recurrent
neural fuzzy (RNF) systems (Liu et al., 2009). The authors’
research group has also developed several data-driven predictors
for machinery applications (Liu et al., 2009; Wang and Vrbanek,
2008), and the investigation results have shown that if an NF
predictor is properly trained, it performs better than both the
feedforward and the recurrent NN forecasting schemes. The
prediction output of a data-driven predictor can be generally
described as

Yk ¼ gðC1:q, Y1:k�1Þþuk, ð1Þ

where Yk is the predicted measurement at step k, Y1:k�1 is the
system’s historical measurements up to time step k�1, C1:q are
the system inputs (or system operational conditions), g( � ) denotes
the nonlinear prediction reasoning, and uk is a random noise that
represents the prediction uncertainty. The uncertainty term uk gen-
erally pertains to the specific data-driven prognostic scheme (i.e., the
structure and training algorithm) as well as the quality and quantity
of training data, which can be estimated through a large number of
simulations (Tiwari and Chatterjee, 2010).

Although data-driven prognostic methods have demonstrated
some superior properties to other classical forecasting tools, they
still have some limitations in industrial applications (Walter and
Pronzato, 1997): (1) the forecasting accuracy strictly depends on
if the training data are adequate and representative of all the
possible application conditions. Such a requirement is usually
difficult to achieve in real-world applications because, on one
hand, running a system to failure could be a lengthy and rather
costly process and the training data are usually inadequate in
industrial applications; on the other hand, most machines/sys-
tems operate in noisy and/or uncertain environments and
machinery dynamic characteristics may change suddenly (e.g.,
just after repairs or regular maintenance), thus the training data
cannot cover all the possible operational conditions. (2) For NN/
NF-based predictors, the forecasting reasoning structures are
usually difficult to be understood by users. This limits their
applications in which reasoning transparency (or understandabil-
ity) is required. (3) The prediction uncertainty uk usually increases
dramatically as the prediction step becomes larger; as a result, an
appropriate filtering process is required to further improve the
forecasting accuracy. The aforementioned limitations associated
with data-driven prognostic methods can be properly alleviated
through the proposed data-model-fusion framework, which will
be discussed in Section 2.3.

2.2. The particle filtering-based prognostic approach

For complex systems whose internal state variables are inac-
cessible (or hard) to direct measurement using general sensors,
inference has to be made from indirect measurements, for which
Bayesian learning provides a rigorous framework. Given a general
discrete-time state estimation problem, the unobservable state
vector XkARn evolves according to the following system model

Xk ¼ f ðXk�1Þþwk, ð2Þ

where f:Rn-Rn is the system state transition function and wkARn

is a noise whose known distribution is independent of time. At
each discrete time instant, an observation (or measurement)
YkARp becomes available. This observation is related to the
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