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a b s t r a c t

Ground and airborne radar depth-sounding of the Greenland and Antarctic ice sheets have been used

for many years to remotely determine characteristics such as ice thickness, subglacial topography, and

mass balance of large bodies of ice. Ice coring efforts have supported these radar data to provide ground

truth for validation of the state (wet or frozen) of the interface between the bottom of the ice sheet and

the underlying bedrock. Subglacial state governs the friction, flow speed, transport of material, and

overall change of the ice sheet. In this paper, we utilize machine learning and classifier combination to

model water presence from airborne polar radar data acquired on Greenland in 1999 and 2007. The

underlying method results in radar independence, allowing model transfer from 1999 to 2007 radar

data to produce water presence maps of the Greenland ice sheet with differing radars. We focus on how

to construct a successful set of classifiers capable of high classification accuracy. Utilizing multiple

machine learning algorithms is shown to be successful for this classification problem, achieving 86%

classification accuracy in the best case. Several heuristics are presented for constructing teams of

multiple classifiers for predicting subglacial water presence. The presented methodology could also be

applied to radar data acquired over the Antarctic ice sheet.

& 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Remote sensing methods, such as radar and seismic/acoustic
surveys, attempt to acquire data in order to infer properties of the
subsurface from a remote location such as the surface, air, or
space. A prominent example is the use of radar sensors to gather
data from the polar ice sheets, specifically internal layers and the
ice–bedrock interface, from the surface of an ice sheet. Other
examples are satellite-based imagery and identification of land-
cover and events, and the observation of light and its character-
istics to infer properties of distant galaxies and stars.

Ground and airborne depth-sounding of the Greenland and
Antarctic ice sheets have been used for many years to determine
characteristics such as ice thickness, subglacial topography, and
mass balance of large bodies of ice. Radar sounding of ice sheets is
challenging due to the rough surface interface, various stages of
melting both on top of and within the ice sheet, and spatial
variation of ice thickness and bedrock topography. Processing the
data, including the incorporation of knowledge about the sensing
medium, is important for proper interpretation and dissemination
of accurate data to the scientific community. For example, in

Greenland, water is present over continuous finite distances
which are smooth, but do not qualify as large lakes that are
evident in Antarctica.

At the University of Kansas, the Center for Remote Sensing of Ice
Sheets (CReSIS, 2009) performs polar research to gather data and
model ice sheets to better understand global climate changes and the
possible effects, including sea level impacts. We have designed, built,
and utilized mobile robots to autonomously traverse polar terrain in
Greenland and Antarctica and support radar remote sensing data
acquisition (Gifford et al., 2009; Stansbury et al., 2004; Harmon et al.,
2004; Akers et al., 2004, 2006a, 2006b). Airborne systems have been
developed to offer large-scale studies of polar regions. One primary
technology for this research is the development of sophisticated
radars. CReSIS researchers have provided first views of the ice sheet
bed in fast-flowing areas and certain internal ice sheet layers, and
continue to provide detailed subsurface images and models describ-
ing their behavior and dynamics. CReSIS has a wide variety of radar
data from various radar designs over many years. All of these data
are available to the public, providing information such as latitude,
longitude, radar travel times, bed echo intensity, and ice thickness
for extended flight segments. This data repository can then be used
for advanced machine learning, data mining, and modeling efforts for
polar environments.

In this paper, we utilize ice-penetrating radar data collected in
Greenland in May 1999 and September 2007 as part of a model-
creation effort for subglacial water presence classification. Using radar
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data from ice sheets, the goal is to learn a model of water presence or
absence for each radar measurement. This enables the production of
predicted water presence maps for the scientific community without
needing to drill resource-intensive ice cores. Specifically, a detailed
study of ensemble learning and decision combination has been
conducted. Experimental results are presented, including successful
ensemble compositions, individual learning algorithm contribution,
team size, and team diversity. Finally, classification results as well as
ensemble learning heuristics discovered as part of this investigation
are discussed.

2. Background and related work

Machine learning techniques have seen limited application
to ice sheet and polar subsurface data. Most efforts involve
identification or tracing of specific layers that hold historical
importance. Internal layers of ice sheets have been investigated
to predict the depth and thickness of certain layers. For
example, initial efforts to predict the depth and thickness of
the Eemian Layer in the Greenland ice sheet utilized a Monte
Carlo Inversion of the flow model to estimate unknown para-
meters constrained by the internal layers (Buchardt and Dahl-
Jensen, 2007a, 2007b). One of these parameters is the basal
melt rate, an important parameter for ice sheet models. Similar
work has been done to classify the presence of bottom cre-
vasses, and to estimate their height using radar data of the Ross
Ice Shelf in Antarctica (Peters et al., 2007). A physical model
was developed by studying the radar data and long echo tails
that were found to be characteristic of bottom crevasses. That
work largely involved studying the data to determine power
reflection coefficients, and did not incorporate any regression
or machine learning methods.

Learning classifiers have been recently employed for autono-
mous polar event detection via satellites. As part of NASA’s New
Millennium Program, the Autonomous Sciencecraft Experiment
(ASE) has been used for detecting dynamic events—such as
volcanic eruptions, floods, and cryospheric events—using onboard
science algorithms. One such focus was on the detection of ice-
based surface events (lakes freezing/thawing and sea ice breakup)
(Castano et al., 2005, 2006). As part of that work, four pixel-based
classifiers (manually constructed classifier, exhaustive threshold
band ratio search classifier, decision tree, and SVM) were
employed to generate models to recognize events using hyper-
spectral images. The SVM classifier, which has seen regular use
onboard the EO-1 spacecraft, successfully classified sea ice
breakup near Antarctica which autonomously triggered a space-
craft reaction. Such a classifier can be used to identify high
priority data and reduce the bandwidth for data communication
back to Earth. In Srivastava and Stroeve (2003), preliminary
results are presented for unsupervised discovery of geophysical
processes (including snow, ice, and clouds) from a spaceborne
instrument over Greenland. Their results showed that regional
classifiers provide higher classification accuracy for polar regions,
but still had difficulty differentiating between certain clouds and
snow/ice. Others have taken a knowledge-engineering approach
to build an intelligent satellite sea ice classifier by creating rules
from sea ice experts (Soh and Tsatsoulis, 2000).

Efforts to classify subsurface layers, occasionally called facies
in the literature, using ground penetrating radar (GPR) are
abundant. Together with seismic surveying, GPR allows the
remote sensing of subsurface properties to guide decisions of
where to drill for oil or natural gas, as well as help explain
observed surface changes. Radar reflection patterns can be used to
distinguish echo returns in different regions, which lends well
to machine learning methods to associate such patterns with

distinct classes (Moysey et al., 2005). GPR signal interpretation is
one of the more studied applications of subsurface classification,
as interpretation of subsurface materials or layers requires coring
or drilling to determine ground truth. Experts are required to
manually study the materials to segment them into distinct rock
or object classes. These data can then be used by classifiers to
learn a model between GPR return signals and the excavated
ground truth. As GPR has been used for many applications,
machine learning can aid in automating these tasks by learning
a model, interpolating between measurement sites, and charac-
terizing the subsurface at other unknown locations.

From these works, it has been shown that using machine
learning to create models utilizing polar radar data analysis is not
only feasible, but also can provide high levels of accuracy while
offering a significant increase in efficiency. In the following
sections, we discuss the approach, using multiple learning algo-
rithms, to further increase accuracy and efficiency for the applica-
tion of subglacial water presence classification from radar data
acquired on the Greenland ice sheet. This approach could also be
applied to the Antarctic and other large bodies of ice, but is not
explicitly discussed in this paper.

3. Radar, coring, and subglacial water

As part of NASA’s Program for Arctic Regional Climate Assess-
ment (PARCA) and others, the University of Kansas and CReSIS
have collected ground and airborne radar data in Greenland
which cover the majority of the continent’s ice sheet. CReSIS
now hosts these data for public use. Other major efforts, such as
ice coring, have produced data that complement these radar data
sets to study subglacial activity of the Greenland ice sheet.

Studying the extent/presence of subglacial water is important,
as the state of the bed of the ice sheet (wet or frozen) provides
information about flow, friction, and roughness of the underlying
bedrock interface. The presence of water (wet state) means that
the interface is likely slippery, or that heat has caused a downflow
of water from upper or nearby portions of the ice sheet. Portions of
the ice with larger amounts of water exhibit faster flow properties
and dynamic changes of the ice in those regions due to lubrication
at the bed. The lack of water means that the interface is frozen,
likely exhibiting more friction and therefore little movement.
A smooth bedrock interface lends more to sliding of the ice
sheet along its surface, whereas a rough interface introduces
more friction between the ice sheet and bedrock on which it rests.
If water is present at the bed, then the interface between the ice
and water will be smoother, compared to a mixed water and rock
interface (which will exhibit the shape of the underlying rock).
Transport of material, however, may cause this lower rock inter-
face to change over time.

Ice coring offers an additional method to study, among many
other things, the state of the ice–bedrock interface by manually
examining the bottom of the cored ice column. Thus, ice cores
represent the only ground truth available for large-scale ice sheet
modeling and remote sensing validation. In Greenland, there are
two primary drill sites which we focus on in this work, namely,
GRIP and N-GRIP. The Greenland Ice Core Project (GRIP) drilled a
core from 1989 to 1992 to a depth of 3029 m, located at 72.58 N,
�37:63 W (NCDC, 2009). The subglacial state of this core was
found to be frozen. The North GRIP (N-GRIP) drilled a core from
1999 to 2003 to a depth of 3085 m, located at 75.1 N, �42:32 W
(NGRIP, 2009). The subglacial state of this core was found to be
wet (high melt).

As a radar transmits energy down to and into the ice—typi-
cally from one or more transmitting antennas mounted on the
wings of an aircraft—changes in dielectric properties cause the
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