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a b s t r a c t

A new hybrid optimization algorithm is proposed for minimization of continuous multi-modal

functions. The algorithm called Global Simplex Optimization (GSO) is a population set based

Evolutionary Algorithm (EA) incorporating a special multi-stage, stochastic and weighted version of

the reflection operator of the classical simplex method. An optional mutation operator has also been

tested and then removed from the structure of the final algorithm in favor of simplicity and because of

insignificant effect on performance. The promising performance achieved by GSO is demonstrated by

comparisons made to some other state-of-the-art global optimization algorithms over a set of

conventional benchmark problems.

& 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Unconstrained global optimization of a continuous function f

aims at finding its global optimum without being trapped into one
of its local minima, where function f depends on a set of
continuous decision variables or design parameters y¼(y1,y2,y,yn)
and is assumed to be subject to only box type constraints, i.e. each
variable is limited only by a lower and upper bound. Among the
mathematical algorithms in the literature dedicated to the subject,
one might see a special interest in Evolutionary Algorithms (EAs)
and their main branches, including Genetic Algorithms (GAs),
Genetic Programming (GP), Evolution Strategies (ESs), and Evolu-
tionary Programming (EP). Their principal mode of operation is
based on the same genetic concepts, a population of competing
candidate solutions, random combinations and alterations of
potentially useful structures to generate new solutions and a
selection mechanism to increase the proportion of better solutions.
The different approaches are distinguished by the genetic struc-
tures that are adopted and the genetic operators that are utilized in
generating new candidate solutions.

Many ‘hybrid’ algorithms have been proposed in the literature
combining a global optimization algorithm with a classical ‘hill-
climbing’ algorithm in order to gain performance improvements. A
subset of these works, dealing with the integration of EAs with the

classical Nelder–Mead simplex method (Nelder and Mead, 1965), has
drawn interest in recent years. Simplex method is a robust, easy to be
programmed and fast local search algorithm, which also shows the
feature of making no use of the derivatives of the objective function
at hand. These characteristics have made the classical simplex
method and its modifications an interesting choice for cooperation
with EAs in developing hybrid global optimization schemes.

Many attempts have been made to hybridize GAs with the
classical simplex methods, some of them have been published by
Chelouah and Siarry (2003), Hedar and Fukushima (2003), Musil
et al. (1999), Yen et al. (1998), Yang and Douglas (1998), and
Renders and Bersini (1994). The remarkable features underlying
these hybrid methods are global exploration and parallelism
performed with GA, and local exploitation with a classical or
modified simplex method. A multi-parent recombination operator
for real-coded genetic algorithms, called simplex crossover (SPX),
has also been proposed and investigated (Higuchi et al., 2000;
Tsutsi et al., 1999).

Beside these GA–Simplex hybrids, there exist few works deal-
ing with the hybridization of the simplex method with other
branches of EAs. We are only aware of the works published by
Malaek and Karimi (2008, 2006), Luo and Yu (in press), and
Sotiropoulos et al. (2002), which are shortly described in subse-
quent paragraphs. However, it should be noted that, here, only
the algorithms incorporating elements from two (or more)
methods into a single unified scheme are considered; and as a
consequence, a common practice in which a local search method,
like simplex method, is employed to refine a preliminary solution
obtained by an EA is naturally excluded from our consideration.
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Sotiropoulos et al. (2002) proposed an EA called Simplex
Evolution (SE) based on a deterministic evolution operator, called
Simplex Operator that is actually equivalent to one cycle of the
classical Nelder–Mead simplex method. An iteration of SE starts
by setting the first individual from the current population as the
base point, randomly selecting nþ1 other individuals from the
current population to form a simplex, and performing Simplex
Operator on the selected simplex to generate a new individual
and put it into the new generation. The iteration continues by
selecting the next individual as the base point and so forth. Once
the new generation grows to a fixed population size, the algo-
rithm proceeds to the next iteration by setting the new genera-
tion as the current population.

Malaek and Karimi (2008, 2006) proposed an EA, called Global
Simplex Search (GSS), based on the stochastic modifications of the
reflection and expansion operators of the simplex method. The
method has been independently developed to efficiently find
accurate solutions for the constrained optimization problem
arising from a typical MDM (Mass Distribution Management)
problem (Malaek and Karimi, 2008), following the failure of the
appropriately modified versions of the algorithms CGA and CHA
(Chelouah and Siarry, 2003, 2000) in delivering such capabilities.
The reflection and expansion operators of the classical simplex
method with random reflection and expansion factors have been
employed as the recombination operators of GSS, together with a
low mutation rate. The authors have recognized the impact of the
lower and upper reflection factor limits on the performance of the
algorithm and used them as control parameters. The concept of
generation does not exist in GSS; this allows for smooth decrease
of the population from an initial size to a final one; which also
proves to have an impact on the performance of the algorithm, at
least against the specific MDM problem for which it was
designed.

An algorithm combining the Differential Evolution (DE) (Price
et al., 2005; Storn and Price, 1997) and the classical Nelder–Mead
simplex method called ‘m-simplex evolution’ has recently been
proposed by Luo and Yu (in press). The method is a population set
based EA incorporating stochastic reflection and contraction
operators of the classical Nelder–Mead simplex method with an
additional step, in which an individual not attaining at least the
average fitness of the overall population will take a deterministic
step toward the best individual or away from the worst one, in an
attempt to increase its fitness or at least increase the population
diversity. The main feature of this method is the use of so-called
‘low dimensional’ simplexes consisting of m individuals, where
2omonþ1. For cases where n is much larger than m, the
method has been called Low-Dimensional Simplex Evolution

(LDSE), which has been claimed to exhibit better performances,
compared to Full-Dimensional Simplex Evolution (FDSE). The
authors have also provided numerical results comparing a special
case of m-simplex evolution, called Triangle Evolution (TE)
(i.e. m¼3), with an enhanced DE method.

This paper presents the results of recent research aimed at
further enhancement of the original GSS algorithm and presenting
it as a general continuous global optimization method. The
resulting algorithm, renamed to Global Simplex Optimization
(GSO), to reflect the distinctions it has with the original GSS,
can be viewed as a generalization of the traditional Nelder–Mead
Simplex method to global optimization. The paper is organized as
follows. Section 2 is devoted to the detailed presentation of the
algorithm. Section 3 presents the experimental setup used to
compare the algorithm to other methods, and some words of
conclusion make up Section 4.

2. Global Simplex Optimization

In this section a brief review of the Nelder–Mead simplex
method is presented, followed by the detailed presentation of our
new algorithm.

2.1. Nelder–Mead simplex method

The Nelder–Mead simplex algorithm is a very powerful classi-
cal local descent algorithm, making no use of the objective
function derivatives. A ‘simplex’ is a geometrical figure consisting,
in n dimensions, of nþ1 points x0,y,xn. If any point of a simplex is
taken as the origin, the n other points define vector directions that
span the n-dimensional vector space. Through a sequence of
elementary geometric transformations (reflection, contraction,
expansion and multi-contraction), the initial simplex moves,
expands or contracts (see Fig. 1). To select the appropriate
transformation, the method only uses the values of the function
to be optimized at the vertices of the simplex considered. After
each transformation, a better one replaces the current worst
vertex. Trial moves shown in Fig. 1 are generated according to
the following basic operations:

reflection: xr ¼ ð1þaÞx�axw

expansion: xe ¼ gxrþð1�gÞx
contraction: xc ¼ bxwþð1�bÞx

where xb and xw denote the best and worst vertices of the current
simplex, respectively; x is defined by x¼ ð1=nÞ
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Fig. 1. Available moves in the Nelder–Mead simplex method.
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