
Model-driven engineering techniques for the development
of multi-agent systems

José M. Gascueña a, Elena Navarro a,b, Antonio Fernández-Caballero a,b,n

a Instituto de Investigación en Informática de Albacete (I3A), 02071 Albacete, Spain
b Departamento de Sistemas Informáticos, Universidad de Castilla-La Mancha, 02071 Albacete, Spain

a r t i c l e i n f o

Article history:

Received 8 June 2010

Received in revised form

4 July 2011

Accepted 22 August 2011
Available online 9 September 2011

Keywords:

Agent-based method

Model-driven development

Meta-modeling

MDE-MAS method and tool

Agent-oriented software development

Multi-agent systems

Surveillance systems

Eclipse-Modelling Framework

Graphical Modelling Framework

a b s t r a c t

Model-driven engineering (MDE), implicitly based upon meta-model principles, is gaining more and

more attention in software systems due to its inherent benefits. Its use normally improves the quality

of the developed systems in terms of productivity, portability, inter-operability and maintenance.

Therefore, its exploitation for the development of multi-agent systems (MAS) emerges in a natural way.

In this paper, agent-oriented software development (AOSD) and MDE paradigms are fully integrated for

the development of MAS. Meta-modeling techniques are explicitly used to speed up several phases of

the process. The Prometheus methodology is used for the purpose of validating the proposal. The meta-

object facility (MOF) architecture is used as a guideline for developing a MAS editor according to the

language provided by Prometheus methodology. Firstly, an Ecore meta-model for Prometheus language

is developed. Ecore is a powerful tool for designing model-driven architectures (MDA). Next, facilities

provided by the Graphical Modeling Framework (GMF) are used to generate the graphical editor. It

offers support to develop agent models conform to the meta-model specified. Afterwards, it is also

described how an agent code generator can be developed. In this way, code is automatically generated

using as input the model specified with the graphical editor. A case of study validates the method put in

practice for the development of a multi-agent surveillance system.

& 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Currently, the use of the model-driven engineering (MDE)
approach throughout the software development process is gain-
ing more and more attention (Gasevic et al., 2009). MDE concerns
the exploitation of models as the cornerstone of the software
development process. It allows both developers and stakeholders
to use abstractions closer to the domain than to computing
concepts. Thus, it reduces the complexity and improves the
communication. As the main aim of MDE is to develop software,
this paradigm uses software models as their expression vehicle.

Sometimes, models are constructed to a certain level of detail,
and then code is written by hand in a separate step. Some other
times (most often) code is automatically generated from the models,
ranging from code skeletons to completely deployable products.
Usually, these models are specified by instantiating meta-models,
that is, models to describe models. The basic idea of meta-model is
to identify the general concepts in a given problem domain and the
relations used to describe models. This serves as a strategy that

forces a clear distinction between the real problem to be solved by
the system and the framework where the model lives.

The use of MDE has the following consequences for a software
development process. (1) More time can be devoted to analyzing
and designing models. (2) The time necessary to perform coding
tasks is reduced, as code generators are usually available to carry
them out in an automatic way. The programmers are responsible
for completing those parts of the system that developers either
have decided not to generate or cannot do. (3) The quality of the
developed system is improved, as the generated code (usually)
does not have bugs. And, (4) productivity is improved as the time
necessary for coding is reduced. More effort is devoted to solve
errors during early phases of the life cycle, avoiding in this way
the ‘‘snow ball’’ effect (Pressman, 2010). Moreover, MDE provides
inter-operability among heterogeneous systems thanks to the
specification of bridges between different technologies. Portabil-
ity is also improved to adopt a new technology, just developing a
new code generator, as the models are independent of any
technology. In summary, MDE offers important benefits in aspects
as important as productivity, portability, inter-operability and
maintenance (Kleppe et al., 2003).

In contrast, MDE also demonstrates some drawbacks
(Mattsson et al., 2009). Although MDE automates the steps from
detailed design to implementation, as described before, at present

Contents lists available at SciVerse ScienceDirect

journal homepage: www.elsevier.com/locate/engappai

Engineering Applications of Artificial Intelligence

0952-1976/$ - see front matter & 2011 Elsevier Ltd. All rights reserved.

doi:10.1016/j.engappai.2011.08.008

n Corresponding author at: Departamento de Sistemas Informáticos, Universidad

de Castilla-La Mancha, 02071 Albacete, Spain. Tel.: þ34 967 599200;

fax: þ34 967 599224.

E-mail address: Antonio.Fdez@uclm.es (A. Fernández-Caballero).

Engineering Applications of Artificial Intelligence 25 (2012) 159–173

www.elsevier.com/locate/engappai
www.elsevier.com/locate/engappai
dx.doi.org/10.1016/j.engappai.2011.08.008
mailto:Antonio.Fdez@uclm.es
dx.doi.org/10.1016/j.engappai.2011.08.008


it is not able to automate enforcement of the architecture on the
detailed design. This is due to the inability to model architectural
design rules. Unfortunately, this is a bottleneck in large MDE
projects, as the developers have to carry out this task manually,
that is, in a similar way to more traditional approaches.

On the other hand, multi-agent systems (MAS) are appropriate
to model and develop complex software applications with high
need of autonomy, communication among autonomous elements
and distribution (Jennings et al., 1993; Karageorgos et al., 2003;
Posadas et al., 2008; Leit~ao, 2009). More and more, MAS are
introduced in different domains (e.g. teleoperated systems,
Rodrı́guez-Seda et al., 2010, intruder detection systems, Jha and
Massan, 2002, and so on). Agent-oriented software development
(AOSD) (Henderson-Sellers and Giorgini, 2005) is the paradigm
described for the construction of this kind of systems. Lately,
several methodologies, such as Gaia (Wooldridge et al., 2000),
MaSE (Deloach et al., 2001), ADELFE (Bernon et al., 2003),
Prometheus (Padgham and Winikoff, 2004), Tropos (Bresciani
et al., 2004), and INGENIAS (Pavón et al., 2006) have come up
following this paradigm. Every one of them exhibits the char-
acteristics that a software methodology (Bauer and Odell, 2005)
should have, that is, a modeling language and a software process.
A modeling language is used for the specification of the corre-
sponding models by using its specific syntax (notation) and its
associated semantics. A software process specifies the develop-
ment activities, the inter-relationships among them, and how
they are performed. In the definition of the AOSD methodologies
two different approaches have been followed.

In first place, some of them, such as ADELFE, extend a generic
modeling language – Unified Modeling Language (UML)
(Rumbaugh et al., 2004) – and a process described in the context
of software engineering – Unified Software Development Process
(Jacobson et al., 1999). Other approaches, such as Prometheus,
have their own language and development process. However, no
matter which approach is followed by a methodology, there are
always compelling arguments to provide tool support for their
application. This is why, the MDE approach for building support-
ing tools emerges naturally as a way to improve the development
of agent-based software applications. This is the main argument
that has conducted this work, namely, to show how the AOSD
paradigm can be integrated with the MDE approach.

The rest of the paper is organized as follows. In Section 2 some
previous works related to our proposal are revisited. Then, in
Section 3 our new proposal of the use of model-driven engineer-
ing in Prometheus methodology are described. In Section 4 the
Prometheus Model Editor is introduced in detail through describ-
ing the meta-model definition, the graphical editor construction
and the code generation. A case of study related to the develop-
ment of a multi-agent surveillance system is used in Section 5 to
validate the method. Lastly, Section 6 offers some conclusions and
hints towards future work.

2. Related works in model-driven engineering for multi-agent
systems

Meta-models define general concepts of a given problem
domain and their relationships. General concepts and relation-
ships are really a language that, for instance, may be used to
specify the domain’s requirements (Smolı́k, 2006). The advantage
of introducing meta-models in the development process is the
higher abstraction level to work with.

According to Molesini (2008), meta-models should be used in
AOSD as they describe each methodology and infrastructure in a
compact and precise way. Moreover, they form the basis for
analyzing and comparing methodology and infrastructure.

Indeed, the elements and the relationships that describe them
are present in the meta-models. Besides, they help to study the
existing gap between agent-oriented methodologies and agent-
oriented infrastructures, as they allow one to isolate the main
concepts of the system from the underlying technology. Finally,
meta-models are the starting point to define methodologies along
with their corresponding agent-oriented infrastructures.

Unfortunately, there are several agent-oriented modeling lan-
guages but not a standard one. In principle UML could be
considered as the standard to be used, but it is not the best tool
for modeling agent-based systems (Bauer, 2001). This is basically
due to two reasons: (1) compared to objects, agents are active as
they take initiative and have control over external requests; and
(2) agents do not only act in isolation but in cooperation or
coordination with other agents. Several languages that extend
UML have been proposed so far to solve this problem. For
instance, Agent UML (AUML) (Bauer et al., 2001) is the first agent
modeling language that follows this approach. It provides inter-
action protocol diagrams and agent class diagrams as extensions
of UML’s sequence and class diagram, respectively, as a solution
to the stated problems. However, the absence of a meta-model
and modeling tools are the main drawbacks that explain why this
language is not widely accepted. More recently, the Agent
Modeling Language (AML) (Cervenka and Trencansky, 2007), a
semi-formal visual modeling language based on the UML
2.0 superstructure has been proposed. It is supported by tools
like (Enterprise Architect, 2010; StarUML, 2010). However, AML
does not concern about code generation, as it focuses its attention
on specification tasks. Despite the main aim of AML is to offer a
new and well documented unified language suitable for industrial
development, unfortunately, most research groups are still using
classic methodologies (Henderson-Sellers and Giorgini, 2005),
such as INGENIAS or Prometheus, to carry out the modeling of
agent-based applications.

Now let us focus on one of the principal agent-oriented
methodologies, namely INGENIAS (Pavón et al., 2006). The basis
of INGENIAS methodology is the definition of a MAS meta-model
described by using GOPRR (Graph, Object, Property, Relationship,
and Role) (Kelly et al., 1996). A set of agent-oriented MDE tools
(model edition, verification, validation and transformation) are
integrated into the INGENIAS Development Kit (IDK) (Gómez-
Sanz et al., 2008). The INGENIAS meta-model describes the
elements for modeling MAS from different perspectives—agent,
organization, environment, goals and tasks, and interaction
(Fuentes-Fernández et al., 2010). The agent perspective focuses
on the elements necessary to specify the behavior of each agent.
The organization perspective shows the system architecture.
From a structural point of view, the organization is a set of
entities with aggregation and inheritance relationships used to
define a schema where agents, resources, tasks and goals exist.
Under this perspective, groups may be used to decompose the
organization, plans, and workflows to establish the way the
resources are assigned, whose tasks are necessary to achieve a
goal, and who has the responsibility for carrying them out. The
environment perspective defines the agents’ sensors and actua-
tors, and identifies the system resources and applications. The
goals and tasks perspective describes the relations between tasks
and goals. The interaction perspective describes how the coordi-
nation among agents is performed. The IDK tool supports the
INGENIAS methodology, so that each one of the previous concepts
are specified using either an UML-like or INGENIAS specific
notation. This facility allows users familiar with the UML notation
to reduce the learning curve of INGENIAS. Moreover, the IDK tool
has a module for JADE code generation, and a mechanism to
define templates used to develop code generation modules for the
required target platform.

J.M. Gascueña et al. / Engineering Applications of Artificial Intelligence 25 (2012) 159–173160



Download English Version:

https://daneshyari.com/en/article/380921

Download Persian Version:

https://daneshyari.com/article/380921

Daneshyari.com

https://daneshyari.com/en/article/380921
https://daneshyari.com/article/380921
https://daneshyari.com

