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a b s t r a c t

Many practical engineering applications require the usage of accurate automatic decision systems,

usually operating under tight computational constraints. Support Vector Machines (SVMs) endowed

with a Radial Basis Function (RBF) as kernel are broadly accepted as the current state of the art for

decision problems, but require cross-validation to select the free parameters, which is computationally

costly. In this work we investigate low-cost methods to select the spread parameter in SVMs with an

RBF kernel. Our proposal relies on the use of simple local methods that gather information about the

local structure of each dataset. Empirical results in UCI datasets show that the proposed methods can be

used as a fast alternative to the standard cross-validation procedure, with the additional advantage of

avoiding the (often heuristic) task of a priori fixing the values of the spread parameter to be explored.

& 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Decision making, also known as classification, is a pervasive
task that is present not only in many (if not all) industrial
processes, but also in many other scenarios such as medicine
and finance. Most of the time, the accuracy of the decisions made
within a process is critical for its success as a whole. Due to this
criticality and complexity, this task has been traditionally under-
taken by experts in the relevant field, who had to make a choice
based on the limited available information. While humans can
handle complex tasks reasonably well, they are vulnerable to
psychological biases, lack of consistency and are unable to
consider large volumes of data simultaneously. With the advent
of ever-cheaper computational resources and machine learning
algorithms, experts can now rely on guidance from automatic
systems which do not have the aforementioned drawbacks. These
new decision making algorithms focus on achieving high accuracy
at low computational cost. In this work we will strive to reduce
computational cost while keeping state-of-the-art accuracy.

Support Vector Machines (SVMs) (Boser et al., 1992; Cristianini
and Shawe-Taylor, 2000) are accepted as a standard de facto in
automatic classification. An SVM is a maximum margin linear
classifier, that can be extended to nonlinear problems by the use
of the kernel trick (Schölkopf and Smola, 2002). Most practitioners

find SVMs attractive because of their classification accuracy
reported in the literature. But it should also be noticed that
another major key behind SVMs success is that one only needs to
tune one or two hyper-parameters before the main optimisation
takes place. These hyper-parameters are the kernel design hyper-
parameters and the omnipresent trade-off between regularisation
and training set error minimisation, C. In this sense, most
practitioners bear the following rule of thumb: use an SVM with
a Radial Basis Function (RBF) as kernel and a 10-fold cross-
validation process to determine C and the Gaussian kernel width s.

The above mentioned hyper-parameter selection involves a
huge increase in the computational cost of the training: one has to
a priori define a grid of ðC,sÞ pairs and then solve 10 SVM
problems of size 90% of the complete dataset per grid pair. Of
course more sophisticated ways of surfing the grid can help
reduce this computational burden (Momma and Bennett, 2002;
Ortiz-Garcı́a et al., 2009), but the question about which range of
values to explore for both parameters remains open.

Although many authors have explored the use of different
parameter setting techniques in machine learning algorithms
(Shaheen et al., 2010; Pavón et al., 2008; Bengio, 2000) and, in
particular, in SVMs (Friedrichs and Igel, 2004; Samanta et al.,
2003), most of these methods are based on high computational
cost techniques, such as genetic algorithms (Sardiñas et al., 2006;
Samanta et al., 2003). This fact has prevented these techniques
from becoming mainstream, and most practitioners still prefer to
cross-validate their algorithms’ parameters, see, for instance
Kohavi and John (1995).

In this paper we focus on the estimation of the Gaussian kernel
width. The motivation for this choice is twofold: on the one hand,
s determines the effective rank of the kernel matrix, and thus the
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degrees of freedom that we may use to build a linear classifier in
the feature space. In this sense, very small values of s lead to
ultra-localised kernels, resulting in a classifier equivalent to the
1-Nearest Neighbour; while very big values of s lead to a
classifier that always predicts the most populated class. On the
other hand, once s is fixed, the kernel matrix will not change with
the variations on parameter C. This enables the use of a shared
kernel matrix cache among all the explored values of C, saving
computational cost.

Bearing in mind that the value of s relates to the locality of the
dataset, we propose to explore three methods to estimate s based
on the performance of two cheap non-linear classifiers that
somehow bring out the local structure of the dataset, enabling
us to choose a value for s that captures this locality. The first
cheap classifier is based on K-Nearest Neighbours (Cover and
Hart, 1967). The second one is based on the distance from each
data point to its nearest opposite-class neighbour. The third one
employs a fast clustering algorithm to extract the local geometry
of the problem.

The three methods compare favourably against 10-fold cross-
validation in the selection of the s in several UCI classification
tasks (Blake and Merz, 1998).

The rest of the paper is organised as follows. Section 2 reviews
the SVM and the algorithms that are used to implement the
proposed s estimation methods. Section 3 motivates and presents
in detail the three estimation algorithms. Section 4 includes an
empirical evaluation of the SVM classification performance under
the proposed model selection schemes; we use 10-fold cross-
validation as baseline method. Finally, Section 5 closes the paper
with the main conclusions and the description of our ongoing
research.

2. Background

This section includes a brief review of all the techniques and
algorithms employed in the proposed methods to estimate s.

2.1. Machine classification

Consider a classification problem defined in terms of a set of
labelled examples fðxi,yiÞg

n
i ¼ 1, with observations xiARd and labels

yiAf1;2, . . . ,Lg indicating the class to which observation xi

belongs. There are two general approaches to tackle the design
of an automatic classifier for this problem (Webb, 2002)

� Generative approach: Data are used to learn a probabilistic
model for the distribution of each class. This model consists of
the following probability density functions: pðx9y¼ lÞ and
pðy¼ lÞ, l¼ 1, . . . ,L. The classifier results from the application
of the Bayes optimal classification rule

ŷðxÞ ¼ arg maxl pðy¼ l9xÞ

� Discriminative approach: One selects a parametric classification
rule (also denominated discriminant function) f wðxÞ whose
output determines the class of instance x, and uses the data to
fit the parameters w.

Despite the optimality underlying the former, in practice the
latter is more common since the fitting of the discriminant
function posses an easier optimisation problem (with a smaller
number of variables to optimise) than the learning of a more or
less complex probabilistic model. This intuition can be also
borrowed from daylife experience; it is well known that children
are able to separate dogs from cats without coming up with a
precise definition of each class.

A machine learning version of Occam’s Razor principle translates
to stick to the simplest discriminant function able to solve the
classification problem. This principle helps to prevent from a bad
generalisation due to overfitting. One of the simplest discriminant
functions for binary problems is linear classifiers

oðxÞ ¼ signff ðxÞg ¼ signfwT xþbg ð1Þ

since the number of parameters is equal to the size of the observa-
tions (plus one). Moreover, it is well known from the machine
learning community experience that linear classifiers work reason-
ably well in a good number of applications. Linear classifiers as
formulated in Eq. (1) solve binary problems (they are able to
discriminate between two classes). The linear classification rule
defines a separating hyperplane (or boundary) that divides the input
space in two halfspaces, each one associated with one output class
(see Fig. 1). For one class, usually termed positive class, one expects
that f ðxÞ40, whilst for the other class, termed negative class, one
expects that f ðxÞo0. The quantity yf ðxÞ measures how well is x
classified if y is its label. A much greater than zero value of yf ðxÞ
indicates that x is on the correct side of the boundary and well away
from it. Analogously, a negative value of yf ðxÞ indicates that the
pattern is on the wrong side of the boundary. The more negative the
value of yf ðxÞ is, the further from the boundary (and from being
correctly classified) x lies.

Nevertheless, it is straightforward to reformulate any multi-
class problem as a pool of binary classifications following one of
these strategies:

One vs.

all:
In a problem with L classes, the multiclass classifier is
composed of L classifiers, each one trained to separate
one class from the rest. Each pattern is fed to all the
classifiers and assigned to the class corresponding to
the classifier whose classification is more reliable. In
the linear classification case of Eq. (1) the most usual
criterion is to assign the pattern to the class with
largest f ðxÞ, since the larger this number is, the more
clearly classified as positive sample is x.

One vs.

one:
In a problem with L classes, this strategy involves
training LðL�1Þ=2 binary classifiers, each one trained
to separate a pair of input classes. Since each class can
be predicted by at most L�1 classifiers, the usual
overall classification rule is to assign each pattern to
the most voted class among the LðL�1Þ=2 classifiers.

The training of a linear classifier for a linearly separable problem
consists in determining the value of its weight vector w and bias
term b. It usually involves the optimisation of a functional that
includes a penalty term favoring a reduced number of errors among
the training data set plus some regularisation terms that ensure a
good generalisation capability (good classification rates with testing

Fig. 1. Two different linear discriminant functions classifying the same dataset.

The weight vector w defines the separating plane. Both separating planes have

zero errors in the training set, but the maximal margin plane on the right presents

a smaller risk of incurring in misclassification of test samples. In the right hand

case, the dotted lines represent the classification margin.
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