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a b s t r a c t

In this paper, a multiscale overcomplete dictionary learning approach is proposed for image denoising

by exploiting the multiscale property and sparse representation of images. The images are firstly

sparsely represented by a translation invariant dictionary and then the coefficients are denoised using

some learned multiscale dictionaries. Dictionaries learning can be reduced to a non-convex l0-norm

minimization problem with multiple variables, so an evolution-enhanced algorithm is proposed to

alternately optimize the variables. Some experiments are taken on comparing the performance of our

proposed method with its counterparts on some benchmark natural images, and the superiorities of our

proposed method to its counterparts can be observed in both the visual result and some numerical

guidelines.

& 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Overcomplete (or redundancy) is important in transformation-
based image denoising methods to have the shift invariance
property (Coifman and Donoho, 1994; Bui and Chen, 1998). For
example, with the growing realization of deficiencies of orthogonal
wavelets in denoising images, some redundant multiscale trans-
forms have been introduced, including undecimated Wavelets (Lang
et al., 1996), Curvelet (Starck et al., 2002), Contourlet (Do and
Vetterli, 2002), Wedgelet (Demaret et al., 2005), Bandelet (Zhang
et al., 2010), Shearlet (Blu and Luisier, 2007) and so on. In the past
decade, using spatial overcomplete representation and sparsity for
images denoising has drawn much attention of researches (Elad
et al., 2006; Elad and Aharon, 2006; Elad and Aharon, 2006). Its basic
idea is that the sparse representation (SR) of images will help in
automatically selecting the primary components in images while
reducing the noise components, as long as the dictionary can well
describe the characteristics of images. In more recent works (Aharon
et al., 2006; Protter and Elad, 2009; Chatterjee and Milanfar, 2009;
Turek et al., 2010; Dong et al., 2011), image patches prove to well
represent the statistical properties of the whole image, so a large
number of image patches are taken as the examples from which a
dictionary can be learned. The patches are taken from the noisy
image and then sparsely represented and restored, which lead to
state-of-the-art denoising result.

Although the SR-based denoising methods have proved to work
well on the natural images (Aharon et al., 2006; Protter and Elad,
2009; Chatterjee and Milanfar, 2009; Turek et al., 2010; Dong et al.,
2011), the SR is all executed in the spatial domain. On the other hand,
it has been aware that making avail of the multiscale properties of
images will obtain better denoising result (Bui and Chen, 1998; Lang
et al., 1996; Starck et al., 2002; Do and Vetterli, 2002; Demaret et al.,
2005; Zhang et al., 2010; Blu and Luisier, 2007). Therefore, in this
study we take both the overcomplete representations of images in
spatial domain and transformation domain into account, and propose
a multiscale dictionaries learning approach for image denoising.
Some multiscale overcomplete dictionaries are learned from example
patches, and then used to reduce the noise distributed in the different
scales of images. We reduce the image denoising to an l0-norm
minimization problem with multiple variables. The available optimi-
zation schemes for this NP-hard problem can be mainly divided into
two catalogs: approximation method and relaxation method. The
approximation method includes greedy algorithms and shrinkage
algorithms. A greedy strategy abandons exhaustive search in favor
of a series of locally optimal single-term updates. Its basic idea is
to represent a signal as a weighted sum of atoms taken from a
dictionary, such as matching pursuit (Mallat and Zhang, 1993),
orthogonal matching pursuit (Tropp and Gilbert, 2007) and their
variants (Donoho et al., 2006; Needell, 2009). The approximation
method can correctly pick up atoms in the case of existing sparse
solution and the selection rule is simple to understand. However, it is
characteristics of heavy computation, slow convergence, and can only
work well in the noiseless case. The shrinkage strategy iterates
between shrinkage/thresholding operation and projection onto
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perfect reconstruction, so they are characteristic of low computation
complexity (Chen et al., 2001; Bioucas-Dias and Figueiredo, 2007).
However, they commonly require much iteration when the support
of the solutions cannot be determined. The relaxation method
includes l1-norm and lp-norm methods. Basis pursuit (BP)
(Blumensath and Davies, 2008) approximate the solution that mini-
mizes l1 -norm and reduce the problem to a linear programming (LP)
structure, which is solvable comparing to the l0-norm minimization
and is easy to be integrated into other variational model. However, it
is a difficult optimization task and the tuning of parameter is not
straightforward. Moreover, the equivalence of l0-norm and l1-norm
minimization can only achieve under very strict assumption of the
sparsity of signals (Cand�es and Wakin, 2008). Gradient based
methods are discussed in paper (Figueiredo et al., 2007) and
(Blumensath and Davies, 2008) to solve this problem. The lp-norm
(0opo1) or the weak lp-norm is a popular measure of sparsity used
by the mathematical analysis community, so it is used to serve as a
candidate function for l0-norm (Cand�es et al., 2008). Although it is still
non-convex, it is almost equivalent to l0-norm and can be represented
as a weighted l1-norm form by the iterative-reweighed-least-squares
(IRLS) method. However, this algorithm
is very sensitive to the initialization of solution. Moreover, it is
guaranteed to converge to a fixed-point that is not necessarily the
optimal one.

Evolutionary algorithms (EAs) provide a general and global
searching approach for solving combinational and NP-hard opti-
mization tasks(De Jong, 2006), so in this paper we use EAs to solve
the l0-norm minimization problem discussed above. Genetic
Algorithm (GA) is one of the effective EAs that simulate natural
evolution (crossover, mutation and selection) over populations of
candidate solution (Goldberg, 1989). However, GA is character-
istic of slow convergence (Alberto and Carlos, 2003). The memetic
algorithm (MA) (Alberto and Carlos, 2003; Badillo et al., 2011;
Amaya et al., 2010; Krasnogor and Smith 2005) makes an
improvement on GA by combining GA with a local searching
operation, and proves to perform much better than GA in terms of
the quality of solution and computational cost. In the MA, GA is
used for coarse search, while the subsequent local improvement
is then used to refine the GA. Its superior performance over GA
has been found for various applications, such as combinatorial
optimization problems (Tang et al., 2007), control design (Caponio
et al., 2007), VLSI design (Tang and Yao, 2007), image segmenta-
tion (Jiao et al., 2010) and so on.

In order to tune multiple variables in the optimization pro-
blem discussed above, in our study a MA based alternate optimi-
zation strategy is employed to optimize the dictionaries and
denoise the multiscale images. In the algorithm, two-dimensional
individual is adopted to represent a dictionary. The individuals
are used to perform a global search, followed by a local search
operator, singular value decomposition (SVD), to further reduce
the objective function. The dictionaries and sparse coefficients are
alternately updated until the stop condition is satisfied. Some
experiments are taken on some benchmark natural images to
investigate the performance of our proposed method.

The rest of this paper is organized as follows. In Section 2, we
addressed the classic image denoising problem, and depicted the
memetic algorithm-enhanced multiscale dictionaries learning algo-
rithm. In Section 3, some simulation experiments are taken to
illustrate the efficiency and superiority of our proposed method to
its counterparts. Finally some conclusions are drawn in Section 4.

2. Evolution-enhanced multiscale dictionaries learning

Considering the classic image denoising problem: an image
is measured in the presence of an additive zero-mean white

and homogeneous Gaussian noise, with standard deviation s.
Thus the measured image is Y¼Xþn, and the goal of image
denoising is to recover the clean image X from the noisy image Y.

2.1. A. Multiscale overcomplete dictionaries learning

Consider a redundant transformation on the noisy image, and
denote R as the transformation dictionary. The noisy image can
be written as,

Y¼Rb0 ¼Rbþn ð1Þ

where b0and b are the transformation coefficients of the noisy image
Y and clean image X, respectively. When the transformation has
the redundancy and multiscale property, R is often determined by
the frame theory, such as undecimated wavelets frame, or some
frame composed by cascade orthogonal bases.

Considering the multiscale property of R, we can reformulate
(1) as,

Y¼Rb0 ¼ R1,. . .,RN½ � � b01,. . .,b0N
� �T

¼ R1,. . .,RN½ � � b1,. . .,bN

� �T
þn ð2Þ

where R1,y,RN are the N multiscale dictionaries and b01,. . .,b0N are
the corresponding coefficients. Inspired by the example-based
denoising scheme (Chatterjee and Milanfar, 2009), we extract
the patches from the multiscale coefficient images b0jðj¼ 1,. . .,NÞ
(the patches are processed in raster-scan order in b0j, from left to
right and top to bottom). Then we use these patches to train a
dictionary that is representative of all the image patches and used
to recover bj from b0j.

Let bi,jARp denote the ith(p)1/2
� (p)1/2 local patch vector

extracted from the multiscale coefficients matrix bj at the spatial
location i: bi,j¼Pibj, where Pi denotes a rectangular windowing
operator and the overlapping is allowed. bi,j can represent the ith

patch in bj with its coefficients being ordered lexicographically as

column vector. Assume each patch vector bi,j belongs to the

Sparseland signal (Elad, 2010), i.e., bi,j can be represented sparsely
under a redundant dictionary DjARp�K that contains K prototype

signal-atoms for columns f ~dm,jg
K

m ¼ 1
, that is, bi,j¼Djai,j, ai.jARK and

:ai:j:05K , the MAP estimator for denoising this coefficient patch

is built by solving (Elad, 2010),

fâi,jg ¼

min
fai,j ,Dj ,bj ,Rig

XN

j ¼ 1

XQj

i ¼ 1

:ai,j:0

s:t:
XN

j ¼ 1

XQj

i ¼ 1

:Djai,j�Pibj:
2

2re;

XN

j ¼ 1

Rjbj�Y

������

������

2

2

rd

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

ð3Þ

where Pi is a patch extraction operator, Qj is the number of

patches extracted from bj, and e and d are dictated by s.
Assume the number of the example patches at each scale take

the same value: Q1¼y¼QN¼Q, and denote the sparse coeffi-
cients of patches in bj under the jth multiscale dictionary DjARp�K

as aj¼[a1,j,a2,j,yaQ,j]ARK�Q. Let F¼[P1,P2,y,PQ], the optimiza-
tion problem can then be reduced to,

min
aj ,Dj ,R,bf g

XN

j ¼ 1

:aj:0,1

s:t:
XN

j ¼ 1

:Djaj�Ubj:
2

2re

:Rb�Y:2

2rd

8>>>>>>>>><
>>>>>>>>>:

ð4Þ

where :aj:0,1 is the l0/l1—norm of the matrix aj and represent the
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