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a b s t r a c t

In this paper, we propose a solution to the Multi-Robot Dynamic Task Allocation problem. We use Multi-
Objective optimization in order to estimate, and subsequently, make an offer for its assignment. The
motivation is to provide a generic solution, independent of the domain, with an aim to better utilize
resources such as time or energy. The algorithm provides a significant degree of flexibility, and can be
implemented in a number of diverse domains, provided the modeling of the parameters follows the
convention presented. For this, we take into account – besides the distance traveled – the efficiency of a
robot in a specific task type. The system has been shown to demonstrate scalability, as the experimental
results indicate. It is also capable of responding to changes in the environment.

& 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Multi-robot task allocation is so far an open problem. As the
relevant technology advances, robots can perform more functions.
This yields more perspectives, but also introduces more variables
to consider. Using multiple robots provides improved efficiency. It
minimizes time and other resources required to achieve a task. It
also provides increased robustness, and helps respond to possible
changes in the functioning environment. This paper studies the
online allocation problem. Task information is not known a priori.

Characteristics of tasks are available upon detection, and allocation
takes place in real time.

The aim of this paper is to provide an allocation mechanism.
Therefore, we do not focus on the detection and decomposition
process. Tasks are introduced to the system using a standard
representation that includes all the parameters used by the
algorithm (position, type, importance, etc). They can be detected
using sensors, but also introduced by human users. The proposed
system can be considered neither strictly centralized, nor decen-
tralized. It consists of clusters of robots that are responsible of
covering a geographical area. The structure is shown in Fig. 1.
Clusters are autonomous. They have minimal interaction between
them. Each cluster has a database system that contains known task
types. Clusters synchronize their databases, so that any new task
information is available to the entire system. In the case of a
failure, a cluster replicates the database of a neighbor. This adds
robustness to the system. The process is shown in Fig. 2.

Individual Clusters work in a centralized manner, while the
system as a whole is decentralized. After task detection, an auction
takes place amongst robots capable of executing it. Robots calcu-
late their bid using Multi-Objective Optimization (MOO). They
use a genetic algorithm, and Pareto optimality to solve the
problem. Before deciding on a winner, the auctioneer takes into
account the previous performance of the bidder. The paper is
organized as follows. In the next section a review of other
approaches to the task allocation problem is given. Section 3
provides a more detailed analysis of the proposed algorithm. In
Section 4 the experimental setup in order to evaluate the method
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Abbreviations: Ag¼ fAg1 ,Ag2 ,…,Agsg, set of agents a robot consists of; Aul , auction
for task l; Bl , bid for Task l; C ¼ fC1 ,C2 ,…,Cmg, the set of robot clusters; Ci , a cluster;
Chri , chromosome i; Cri , coordinator of cluster i; Ec , current energy level; Er , energy
level after completion of task queue; Emax , maximum robot energy level;
F ¼ fF1 ,F2 ,…,Fkg, set of functionalities of robot j; Gg , gth generation of chromo-
somes; Obj¼ fObj1 ,Obj2 ,…,Objug, set of Objectives pursued; Oci , occurrences of task
i; Posl , Position of task l; Qi ¼ fTki1 ,Tki2 ,…,Tkilg, task queue of an agent; Qtempi ,
temporary task queue of agent i; Ri ¼ fRi1 ,Ri2 ,…,Ring, robots in cluster i; Rj , robot
j; Rls , task relevancy level; S¼ fS1 ,S2 ,…,Skg, set of sensors deployed in the
environment; Td , time of task detection; Tl , time until completion of task l; Talock ,
allocated tasks for agent k; Tfailk , failed tasks for agent k; Tk¼ fTk1 ,Tk2 ,…,Tkqg, set
of tasks allocated to a robot; Tkil , lth task in Qi; Vj ¼ fEc ,F ,Obj,Ag,Tkg, attributes of
robot j; p0,l , initial priority of task l; pf l , factor by which the priority of task l
increases; rl , position (rank) of Task l in an agent's task queue; tcomp , estimated time
of task completion; texp , task expiry time
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is described. Results are presented in Section 5. Section 6 con-
cludes the paper.

2. Related work

Task allocation systems can be classified according to the
following criteria:

� The time when computations are performed (online–offline)
� The architecture (centralized–decentralized)
� The types of interactions exhibited in Parker (2008)

In an online allocation system, tasks are identified while the
system is functioning. The allocation process takes place after
initialization, and new tasks are introduced after that time.
Basilico and Amigoni (2011) use Multi-Criteria Decision Making
(MCDM), to define exploration strategies in the domain of search
and rescue. Another online algorithm is introduced in Jolly et al.
(2010), this time in the domain of Robot Soccer Systems. They use
a fuzzy neural network in order to plan tasks and select actions.

Korsah et al. (201) used the offline approach. They introduced
the xBots system architecture, where tasks are known a priori.

One can also find hybrid systems, that try to get the best from
both worlds. An example is Xu et al. (2009), where they propose a
Modified Ant Colony System as a solution to the Multi-robot
dynamic task allocation problem. Initially, a leader robot allocates
predefined tasks, minimizing the traversed distance, as well as
balancing workload. Any necessary adjustments after the system

has gone online, are performed by the robots without external
intervention.

The second major distinction is between centralized and
decentralized systems. In a centrally managed system we can
make optimal decisions, as the coordinator has global knowledge
of the environment. A fault in the coordinator however, makes
them unable to operate. Decentralized ones, distribute the proces-
sing required, can be more effective in communication, and are
more scalable. Most recent proposals use the latter approach.

For instance, Dasgupta and Hoeing (2008) propose a market-
based algorithm, along with swarm-based coordination. Agents
that encounter new tasks communicate their task lists to nearby
robots, and use a dynamic pricing algorithm in order to sell them
the task. A slightly different approach, however still distributed,
are Distributed In-Network Task Allocation (DINTA) and Multi-
Field Distributed In-Network Task Allocation (DINTA-MF) intro-
duced in Batalin and Sukhatme (2005) and Batalin and Sukhatme
(2004). They use a static network for communication, sensing and
computation. For every detected task the network computes and
propagates a utility of the task assignments to the robots. Network
nodes make the computations and give nearby robots suggested
directions to follow. On the other hand, in Khamis et al. (2011)
centralized and hierarchical dynamic and fixed tree task allocation
is used.

Considering the types of interactions that are present, a major
category are organizational or social approaches. They model
group dynamics between agents, forming an organization. Such
examples in multi-robot systems are roles, market economies, or
teamwork (Parker, 2008). Robots can compete for a task, or
cooperate to execute it. A commonly used protocol in market-
based architectures is the contract-net protocol discussed in Davis
and Smith (1983).

Zlot and Stentz (2005) extend the TraderBots discussed in Dias
(2004), a market-based solution. The agents can dynamically act as
auctioneers or bidders and facilitate peer-to-peer trades amongst
them. In addition, Zlot and Stentz try to address the decomposition
problemwith the use of task trees. Two different types are used: in
the first the goal is satisfied if all subtasks are executed; in the
other, one subtask is sufficient. The measure of solution quality is
the total distance traveled.

An important parameter in systems that use auctions is the
way utility and bids are calculated. Chapman et al. (2010) define
individual utilities for each agent, as well as a global utility that
they wish to maximize. The global utility is constructed in the
same way as in a centralized Markov Decision Problem. Tovey et al.
(2005) make an attempt to formalize the formation of bidding
rules of auctions, given the objectives. They use a multi-robot
exploration task as a case scenario. Jones et al. (2007) use
regression in order to calculate bids. Hoogendoorn and Gini
(2009) allow agents to express preferences over particular dura-
tions, certain time points, or certain types of tasks. In our proposal,
agents do not express preferences on how long the task they
execute should take to finish, or when in time they want to be
more active. They do express a preference however in the types of
tasks, represented by the Relevance degree, which – like in the
case of Hoogendoorn and Gini (2009) – is expressed by an integer.
Finally, Lagoudakis et al. (2005) suggest a generic framework for
auction-based multi-robot routing and analyze bidding rules for
various objectives.

Lagoudakis et al. are among the first ones to provide upper and
lower bounds on the performance, in a market-based system. The
allocation of a number of exploration tasks to a team of robots is
studied in both papers, Lagoudakis et al. (2005), but also
Lagoudakis et al. (2004). They propose an auction-based algo-
rithm, PRIM ALLOCATION, that produces a cost at most twice as
large as the one with optimal allocation. Furthermore, they

Fig. 1. Structure of the model.

Fig. 2. Insertion of new task type in the system.
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