
Linking software testing results with a machine learning approach

Alexandre Rafael Lenz, Aurora Pozo, Silvia Regina Vergilio n

Computer Science Department, Federal University of Paraná (UFPR), Brazil. CP 19:081, CEP: 81531-970, Curitiba, Brazil

a r t i c l e i n f o

Article history:
Received 15 March 2012
Received in revised form
10 January 2013
Accepted 15 January 2013
Available online 6 April 2013

Keywords:
Machine learning
Software testing
Test coverage criteria

a b s t r a c t

Software testing techniques and criteria are considered complementary since they can reveal different
kinds of faults and test distinct aspects of the program. The functional criteria, such as Category Partition,
are difficult to be automated and are usually manually applied. Structural and fault-based criteria generally
provide measures to evaluate test sets. The existing supporting tools produce a lot of information
including: input and produced output, structural coverage, mutation score, faults revealed, etc. However,
such information is not linked to functional aspects of the software. In this work, we present an approach
based on machine learning techniques to link test results from the application of different testing
techniques. The approach groups test data into similar functional clusters. After this, according to the
tester's goals, it generates classifiers (rules) that have different uses, including selection and prioritization
of test cases. The paper also presents results from experimental evaluations and illustrates such uses.

& 2013 Elsevier Ltd. All rights reserved.

1. Introduction

The main goal of the software engineering is to produce high
quality software. In this sense, software testing is considered a
fundamental activity of the software development. Its main goal is
to reveal faults, through the execution of “good test cases”. A good
test case is one that has a high probability of finding an unrevealed
fault. Testing techniques and criteria have been proposed to
achieve the testing goals with minimal effort and costs. Testing
criteria are predicates to be satisfied and are usually derived by
applying one of the following techniques: functional, structural
(control and data-flow based criteria) and fault-based (mutation
based testing). These criteria consider distinct aspects to derive
test data and can reveal different kind of faults. Hence, a testing
strategy should apply the criteria in a complementary way, and
the use of supporting tools is very important to reduce costs.

The existing tools usually implement structural and fault based
criteria, and generally produce different results. Results from struc-
tural criteria include: required elements, executed paths and struc-
tural coverage. Supporting tools for fault-based techniques are
usually based on mutation testing, and generate: number of mutants
created by each operator, mutation score, dead mutants, etc. In this
kind of test each mutant, as well as the corresponding mutation
operator, describe a specific fault. One of the most known and used
functional criterion, Category Partition (Ostrand and Balcer, 1988),
divides the input domain into equivalence classes considering the
functionality of the program, and/or its input and output. After this, it
selects at least one test data from each class. But this division is

commonly very subjective and influenced by the tester. Due to this,
the functional criteria are difficult to be automated and are generally
manually applied.

In the literature, we find works on automatic generation or
improvement of functional test data. Works that investigate the use
of machine learning (ML) techniques present promising results. These
techniques are capable of acquiring knowledge from data and per-
forming very well on subjective tasks (Mitchell, 1997). Someworks use
the specification, and inputs and outputs for reducing test sets (Last
and Kandel, 2003; Saraph et al., 2003). Other ones use faults (Briand
et al., 2008) or the structural coverage to learn the program specifica-
tion or behavior of the program (Bowring et al., 2004). We can see that
works on the automatic generation of functional test data generally
consider only a kind of test information. Furthermore, they do not
integrate information resulting of different testing techniques that
should be applied in a test strategy. They do not have the goal of
establishing relationships among them.

To overcome this limitation, in a previous work (Lenz et al.,
2011) we introduced a ML approach with such goal. The approach
has as entry the information produced by different testing tools
and criteria, and uses clustering techniques to group test cases into
clusters. The clusters can be used as functional equivalence classes.
In this way, the approach contributes to automate the functional
criterion Category Partition, by using information resulting from
the application of complementary testing techniques. Now, the
present paper extends previous work. The approach is refined
with additional steps, where the test results and clusters feed ML
classifier algorithms, which produce sets of if–then rules to classify
test cases. The obtained rules are very helpful during the regres-
sion testing and can be used in different ways to reduce testing
costs and effort. The rules can be used to produce a strategy for
reduction and prioritization of test data according to tester's goals.
Moreover, the paper presents more complete experimental results

Contents lists available at SciVerse ScienceDirect

journal homepage: www.elsevier.com/locate/engappai

Engineering Applications of Artificial Intelligence

0952-1976/$ - see front matter & 2013 Elsevier Ltd. All rights reserved.
http://dx.doi.org/10.1016/j.engappai.2013.01.008

n Corresponding author. Tel.: þ55 11 33613681; fax: þ55 11 33613205.
E-mail addresses: arlenz@gmail.com (A. Rafael Lenz),

aurora@inf.ufpr.br (A. Pozo), silvia@inf.ufpr.br (S. Regina Vergilio).

Engineering Applications of Artificial Intelligence 26 (2013) 1631–1640

www.elsevier.com/locate/engappai
www.elsevier.com/locate/engappai
http://dx.doi.org/10.1016/j.engappai.2013.01.008
http://dx.doi.org/10.1016/j.engappai.2013.01.008
http://dx.doi.org/10.1016/j.engappai.2013.01.008
http://crossmark.dyndns.org/dialog/?doi=10.1016/j.engappai.2013.01.008&domain=pdf
http://crossmark.dyndns.org/dialog/?doi=10.1016/j.engappai.2013.01.008&domain=pdf
http://crossmark.dyndns.org/dialog/?doi=10.1016/j.engappai.2013.01.008&domain=pdf
mailto:arlenz@gmail.com
mailto:aurora@inf.ufpr.br
mailto:silvia@inf.ufpr.br
http://dx.doi.org/10.1016/j.engappai.2013.01.008


including three clustering algorithms and different sets of attri-
butes related to the available testing information. The paper also
illustrates possible uses of the generated clusters and classifiers for
reduction of regression test data sets in comparison with other
common strategies.

The paper is organized as follows. Section 2 introduces some
background on software testing. Section 3 reviews the ML field.
Section 4 introduces the approach. Section 5 describes how the
approach was evaluated. Section 6 presents evaluation results.
Section 7 illustrates possible uses of the introduced approach in
testing tasks such as: reduction, selection and prioritization of test
cases. Section 8 contains related work. Section 9 presents conclu-
sions and future works.

2. Software testing

There are in the literature different testing techniques and criteria.
The functional criteria (or black box testing) derive test data only
based in the specification or functionalities of the program. The most
used functional criterion is Category Partition (Ostrand and Balcer,
1988) that divides the input domain into equivalence classes and
selects at least one element in each class. The division is based on the
functionalities of the program and generally considers the input and
outputs produced. The main disadvantage of this criterion is that the
partition is commonly subjective and difficult to automate. Therefore,
it is often manually applied.

Structural criteria consider the structure of the implementation
to derive the tests. They generally require the execution of
complete paths of the program to cover certain required elements
such as nodes, edges, paths or associations between variables and
their consequent uses. Poketool (Potential-Uses Criteria Tool for
program testing) (Maldonado et al., 1992) is a tool that implements
the following structural criteria: (1) control-flow based criteria:
all-nodes (AN), all-edges (AE); and (2) data-flow based criteria: all-
potential-uses (PU), all potential-du-paths (PDU) and all-potential-
uses/du (PUDU).

Fault-based criteria derive test data based on specific faults that
can be present in the code due to common programmer's mis-
takes. The most known fault-based criterion is Mutation Analysis,
which generates mutant versions of the program P being tested
through the application of mutations operators. Each mutant
describes a fault that can be present in P. Test data are generated
to distinguish the output produced by P and its mutants. Proteum
(Program Testing Using Mutants) (Delamaro and Maldonado, 1996)
is a tool that supports mutation testing of C programs.

After the application of the testing criteria, a lot of information
is produced and available. In many cases, some test cases need to
be re-executed during regression testing. Let P be a program, let P′
be a modified version of P and let T be a test suite for P. Regression
testing is concerned with validating P′. It is fundamental to get
confidence that the changes made in the program are correct and
to ensure that unchanged parts of the program were not affected.
This may include the reuse of T, and the creation of new test cases.

Rothermel et al. (2004) consider four main methodologies that
are used in the context of reusing an existent T:

� retest-all (Leung and White, 1989): reuses all test cases of T.
To rerun all tests conducted before is desired but also is an
expensive and effort-consuming task;

� regression test selection (Rothermel and Harrold, 1996): this
problem can be described as: given P′, a new version of
program P, and T an existing test set, the problem is how to
select T ′⊂T to execute on P′. Different test selection techniques
were proposed. Some of them are based on the program
specification, but most of them consider the information about

the code of the program. They also have distinct goals
(Rothermel and Harrold, 1996): to locate modified elements
or components and to select tests that exercise those compo-
nents (coverage based techniques); to select minimal sets of
test (minimization techniques); to select tests that can expose
one or more faults (safe techniques);

� test suite reduction (Chen and Lau, 1996; Harrold et al., 1993;
Jones and Harrold, 2001; Offutt et al., 1995): has the goal of
removing redundant test cases from T by reducing the test-
suite size and cost. But this can also reduce the fault detection
capability of the test suites; and

� test case prioritization (Elbaum et al., 2001a,b; Jones and Harrold,
2001; Srivastava and Thiagarajan, 2002; Wong et al., 1997):
schedules test cases so that those with the highest priority,
according to some criterion, are executed earlier in the regression
testing process than lower priority test cases. For example, testers
might wish to schedule test cases in an order that achieves code
coverage at the fastest rate possible, exercises features in order of
expected frequency of use, or increases the likelihood of detecting
faults early in testing. Many different prioritization techniques have
been proposed, but the techniques most prevalent in literature and
practice involve those that utilize simple code coverage informa-
tion, and those that supplement coverage information with details
on where code has been modified.

The results produced by our approach can be used for selection,
reduction and prioritization of test cases according to aspects that the
tester wants to emphasize. These uses are illustrated in Section 7,
which also provides a comparison with some traditional techniques
that can be used to perform these tasks.

3. Machine learning

Machine learning techniques implement mechanisms for auto-
matically inducing knowledge from examples (Mitchell, 1997).
Each example is represented by a vector V of attributes values.
According to the available information they are classified into:
supervised and unsupervised learning.

Supervised learning usually formulates the problem as a
classification problem. The training data consist of pairs of inputs
(vectors) and desired outputs. The classification task produces
a model based on the data, which is used to classify unseen data
item according to its attributes. For example, in a classification
problem, a hospital may want to classify medical patients into
those who have high, medium or low risk to acquiring a certain
illness. In this paper, to illustrate the use of our approach we
use the algorithm C4.5 (Quinlan, 1993; Mitchell, 1997) based on
Decision Trees. The C4.5 algorithm uses the information gain
and entropy measures to decide on the importance of the
attributes. C4.5 recursively creates branches corresponding to
the values of the selected attributes, until a class is assigned as
a terminal node. An instance is classified by starting at the
root node of the tree, testing the attribute specified by this node,
then moving down the tree branch corresponding to the value of
the attribute. This process is then repeated for the sub-tree
rooted at the new node. Each branch of the tree can be seen as
a rule, whose conditions are formed by their attributes and
respective tests.

Unsupervised learning detects relationships among examples,
e.g., the determination of similar groups of examples. It is
distinguished from supervised learning in that the learner is given
only unlabeled examples. Clustering can be considered the most
important unsupervised learning task. Clustering techniques
explore similarities between patterns, grouping the similar ones
into categories or groups. For example, in a medical application we

A. Rafael Lenz et al. / Engineering Applications of Artificial Intelligence 26 (2013) 1631–16401632



Download English Version:

https://daneshyari.com/en/article/381015

Download Persian Version:

https://daneshyari.com/article/381015

Daneshyari.com

https://daneshyari.com/en/article/381015
https://daneshyari.com/article/381015
https://daneshyari.com

