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a b s t r a c t

Ant Colony Optimization is a swarm intelligence approach that has proved to be useful in solving

several classes of discrete and continuous optimization problems. One set, called scheduling problems,

is extremely important both to academics and to practitioners. This paper describes how the current

literature uses the ACO approach to solve scheduling problems. An analysis of the literature allows one

to conclude that ACO is a hugely viable approach to solve scheduling problems. On the basis of the

literature review, we were not only able to derive certain guidelines for the implementation of ACO

algorithms but also to determine possible directions for future research.

& 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Ant Colony Optimization (ACO) is a meta-heuristic approach
proposed by Colorni et al. (1991) and improved in later research
(e.g., see Dorigo et al., 1996 for the Ant Colony System and Stützle
and Hoos, 2000 for the Max–Min Ant System). The behavior
common to all approaches involving ant-based algorithms lies
in the mimicry of the behavior used by ‘‘real’’ ants to find the
optimal path between their nest and a food source.

The earlier application of ACO was to solve the well-known
NP-Hard Traveling Salesman Problem (Colorni et al., 1991; Dorigo
et al., 1996; Dorigo and Gambardella, 1997). In this problem,
there is a graph in which each node corresponds to a city, and the
arcs correspond to the distances between cities. The problem
consists of obtaining a minimal tour (sequence of cities) length
that contains all the nodes.

Several studies have applied ACO to solve different discrete
and continuous optimization problems, such as vehicle routing,
quadratic assignment problems and graph coloring. Dorigo and
Stützle (2004) reported more than 30 problems where ACO-based
algorithms have been used successfully.

One of these applications involves scheduling problems. With
the significance of these problems recognized because of their
impact on real environments and their academic relevance (e.g.,
Pinedo, 2009), ‘‘scheduling problems’’ are a huge set of problems,
and are mostly NP-Hard, that try to deal with a simple question:

given a set of jobs, a set of resources, a set of constraints, and an
objective function, how should the jobs be allocated to the
resources?

Answering this question, however, usually requires complex
and/or time-costly procedures. The great advantage in using a
meta-heuristic such as ACO to obtain near-optimal solutions is
that the time required to solve the problem is usually acceptable
even though the 100% optimal solution may not be achieved.

This paper aims at reviewing and classifying published studies
that use ACO to solve scheduling problems, and it focuses on the
four classical manufacturing environments (single machine, par-
allel machine, flowshop and jobshop). Different scheduling pro-
blems, such as service scheduling (e.g., see Gutjahr and Rauner,
2007 for an ACO approach to the nurse-scheduling problem) are
not included in the revision. In addition, this paper concentrates
only on uses of the ACO meta-heuristic on its own: any ‘‘hybrid
approach’’ is disregarded.

This paper contribution is twofold. In the first instance, it aims
to help researchers apply this technique in production scheduling,
demonstrating how research is being carried out in the literature.
Therefore, some guidelines relating to the characteristics of the
ACO algorithm applied to scheduling problems are derived. In the
second instance, certain directions for future research in the field
are highlighted.

To present the results, this paper is divided into six sections:
Section 2 deals with the basics of scheduling problems; Section 3
is concerned with the ACO; Section 4 has to do with the
classification method proposed and the papers reviewed;
Section 5 presents an overview of the ACO application to schedul-
ing problems; Section 6 shows a quantitative analysis of the
literature; and Section 7 presents the final remarks.
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2. Scheduling problems

Scheduling problems are devoted to allocating tasks to
resources (Baker, 1943). Scheduling theory contains an almost
unlimited set of problems (Brucker, 2007). In this paper, accord-
ing to the current literature, scheduling problems are character-
ized by three main attributes: (i) the manufacturing environment,
(ii) the constraints, and (iii) the objective function. By under-
standing these three attributes, it is possible to use the scheduling
problem classification scheme proposed by Graham et al. (1979).
The authors state that it is possible to represent a scheduling
problem using the notation a=b=g, where a represents the
manufacturing environment, b represents the constraints and g
represents the objective function. This section is devoted to
presenting certain values of these three components that will be
used in the following sections.

2.1. Manufacturing environments

The first question that arises in describing a scheduling
problem has to do with production flow. Graham et al. (1979)
described four main categories of scheduling problems as follows:

(i) A single machine environment (a¼ 1), where all the jobs
must be processed by a single machine;

(ii) A parallel machine environment, where all the jobs must be
processed by just one machine. The machines in this envir-
onment can be identical (a¼ Pm), uniform (a¼Qm) or unre-
lated (a¼ Rm). Here m represents the number of machines;

(iii) A flowshop environment (a¼ Fm), where each task contains a
set of operations that must be performed on specific
machines; each task uses the same sequence of resources,
and m represents the number of stages in the production
flow;

(iv) A job shop environment (a¼ Jm), where each task contains a
set of operations that must be performed on specific
machines. In this case, each task contains its own production
flow and, as with the flowshop, m represents the number of
stages in the production flow.

This paper uses the notation a¼Mm. Following Li et al. (2009),
this notation is used to indicate a manufacturing environment
with parallel machines that allow the execution of batches.

2.2. Constraints

Practitioners usually find themselves bound by specific char-
acteristics of the target scheduling problem. These constraints can
be, for example, related to the sequence (e.g., when b¼ prmu, the
job assignment sequence of a flowshop environment is the same
throughout the production flow), or to a maximum budget that
can be used to outsource some jobs (when b¼ Budget). Table 1
shows the constraints adopted by this paper.

2.3. Common objective functions

There are several performance measures used to describe
scheduling problems. Although a description of all of these
performance measures is beyond the scope of this paper, some
must be defined. Hence, let us use a set of n jobs Ji, iAn released
at ri with processing time pi and due date di. For any sequence, it
is straightforward to calculate certain indicators, as follows:

(i) The completion time of a job Ji (Ci ¼ t0þpi), t0 is the start time
of Ji;

(ii) The lateness of a job Ji (Li ¼ di�Ci);

(iii) The earliness of a job Ji (Ei ¼maxfdi�Ci,0g);
(iv) The tardiness of a job Ji (Ti ¼maxfCi�di,0g);
(v) The makespan of the sequenced jobs (M¼maxfCig).

Table 1 shows all the terms used to describe the objective
functions of the scheduling problems presented in this paper.

2.4. A simple example

This section shows a simple example of a scheduling problem.
Let S0 be a set of four jobs to be sequenced in a single machine
environment. These four jobs are described in Table 2. In this
table, column i indicates the job index; column pi indicates the
processing time of the job; and di indicates the due dates. These
tasks can be sequenced according a large number of rules,
generating different values for the performance measures. For
example, Table 3 presents the completion time Ci and the
tardiness Ti for each job, using the First In First Out (FIFO) rule.
Table 4 presents the same performance measure ordering the jobs
by their due dates (rule EDD—Earliest Due Date).

The goal of scheduling algorithms is to enhance (by maximiz-
ing or minimizing) the value of a certain performance measure.
One notes in the presented example that the maximum tardiness
of the jobs ordered by EDD is smaller than the maximum
tardiness obtained by the FIFO rule.

To achieve this goal with small-size problems, the solution is
straightforward: simply test all possibilities relating to each
possible job sequence. However, when the problem size increases,
different strategies must be used, due to the prohibitive compu-
tational time involved.

In the following section, the ACO algorithm will be presented.
This algorithm has been used to solve scheduling problems,
generating satisfactory results in a affordable computational time.

Table 1
Symbols used to describe scheduling problems presented in this paper.

Symbol
(position)

Meaning

1ðaÞ Single machine manufacturing environment

PmðaÞ Identical parallel machine manufacturing environment

QmðaÞ Uniform parallel machine manufacturing environment

RmðaÞ Unrelated parallel machine manufacturing environment

FmðaÞ Flowshop manufacturing environment

Jn,mðaÞ Jobshop manufacturing environment

riðbÞ Indicate a set of tasks with different release dates

batchðbÞ Indicate the possibility of generate production batches

incompatibleðbÞ Indicate that exists tasks that cannot belong to the same

processing batch

sijðbÞ Sequence dependent setup

rushðbÞ Rush orders

prmuðbÞ Used to describe a permutational flowshop environment

QiðgÞ Qual-run-time

windowðbÞ Indicate the jobs contains lower and upper bounds of Ci

AijðbÞ Indicate that some jobs are known only after the sequence is

processing

nwtðbÞ Indicates a no-wait constraintP
CiðgÞ Sum of the completion time of all tasksP
TiðgÞ Sum of tardiness of all tasksP
wi � TiðgÞ Sum of weighted tardiness of all tasksP
FiðgÞ Sum of the flowtimes of all tasks

CTVðgÞ Completion time variance

M or CmaxðgÞ Makespan of a sequence

idleðgÞ Indicates the idle time of all machines

TmaxðgÞ Maximum tardiness

OCðgÞ Total outsource cost

BudgetðbÞ Maximum value of OC

a,dðgÞ Constants used to balance the fitness function
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