
Defuzzification block: New algorithms, and efficient hardware and software
implementation issues

H.R. Mahdiani a,b,n, A. Banaiyan d, M. Haji Seyed Javadi c, S.M. Fakhraie b, C. Lucas b

a ECE Department, Sh. Abbaspour University of Technology, Tehran, Iran
b School of Electrical and Computer Engineering, University of Tehran, Tehran, Iran
c Department of Computer, Electronics and IT, Qazvin Branch, Azad University, Qazvin, Iran
d Department of Computer Science, University of California, Irvine, USA

a r t i c l e i n f o

Article history:

Received 23 October 2011

Received in revised form

6 May 2012

Accepted 1 July 2012
Available online 20 July 2012

Keywords:

Fuzzy hardware

Defuzzification

VLSI

Fuzzy software

Fuzzy control

a b s t r a c t

The defuzzification is a critical block when implementing a fuzzy inference engine due to different

variations and also high computational power demands of defuzzification algorithms. These various

methods stand for different cost-accuracy trade-off points. Three new implementation friendly

defuzzification algorithms are presented in this paper and compared with a complete set of existing

defuzzification methods. Some accuracy analysis simulation results and analytic studies are provided to

demonstrate that these methods provide acceptable precision with respect to other existing methods.

The software models of the proposed and exiting defuzzification methods are developed under three

well-known platforms, Intel’s Pentium IV, IBM’s PowerPC, and TI’s C62 DSP to show that new methods

gain much lower execution-time and instruction-count with respect to the most common existing

methods. The hardware models of all these methods are also developed and synthesized to

demonstrate the superiority of the new methods in terms of area, delay, and power consumption with

respect to other methods when implemented in hardware.

& 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Fuzzy control is probably the most important practical fuzzy logic
application. Fuzzification and defuzzification processes are the main
interfaces of the fuzzy system to the real world, when is used in a
real-world application (Sanchez-Solano et al., 2007). The main
operation of these two processes is to provide the numeric to
linguistic conversion and vice versa (Roychowdhury and Pedrycz,
2001) which make it possible to bind the fuzzy inputs and outputs of
the fuzzy inference engine to common sensors and actuators.
Although there are many different defuzzification methods, certain
types of defuzzification methods can be properly used only for
certain types of applications (Runkler, 1997). From the perspective
of fuzzy control however, a defuzzification method is acceptable
whenever it can be used to solve a practical problem (Roychowdhury
and Pedrycz, 2001). The most popular defuzzification technique is
the true center of gravity (COG) which is the preferred choice in most
applications due to some of its unique features. It provides better
accuracy with respect to other defuzzification methods and also is
able to track the continuous changes of the system inputs and

provide smooth and continuous output values (Broekhoven and
Baets, 2004). However, its main disadvantage is its high latency
and also computational complexity that prevents to use it in many
real world applications (Patel and Mohan, 2002).

A fuzzy inference engine might be implemented in three
different approaches: software-only, hardware-only, or any combi-
nation of software and hardware (Del Campo et al., 2008; Reyneri,
2003). According to this classification, three different implementa-
tion alternatives of a fuzzy system can be identified (Costa et al.,
1995): software programs running on general purpose processors or
digital signal processors (Baturone et al., 2008; Costa et al., 1995;
Leottau and Melgarejo, 2010; Lin and Shen, 2006; Mohagheghi et al.,
2009), software programs running on an application-specific inst-
ruction processor (Ansari and Gupta, 2009; Banaiyan et al., 2006a,
2006b; Costa et al., 1995), and fully hardware implementation of the
system using dedicated fuzzy coprocessors and processors
(Basterretxea et al., 2006, 2007; Bulla et al., 2008; Cao et al., 2006,
2009; Hamzeh et al., 2008; Konstantinos et al., 2009; Kwon et al.,
2010; Louverdis and Andreadis, 2003; Melgarejo and Pena-Reyes,
2007; Oh et al., 2011). Either to select any of these approaches to
implement a fuzzy system based on the application type or
performance requirements (Costa et al., 1995; Reyneri, 2003), the
designer should select the most appropriate defuzzification method
according to the application context and also the trade-off between
accuracy (i.e. defuzzified output error) and computational power
demand (i.e. hardware complexity or software execution time).

Contents lists available at SciVerse ScienceDirect

journal homepage: www.elsevier.com/locate/engappai

Engineering Applications of Artificial Intelligence

0952-1976/$ - see front matter & 2012 Elsevier Ltd. All rights reserved.

http://dx.doi.org/10.1016/j.engappai.2012.07.001

n Correspondence to: Computer and Electronics Group, Sh. Abbaspour University

of Technology, East Vafadar Blvd., Tehranpars, P. O. Box: 16765-1719, Tehran, Iran.

Tel.: þ98 21 73932630; fax: þ98 21 77312798.

E-mail addresses: mahdiani@gmail.com, mahdiany@ut.ac.ir,

mahdiani@pwut.ac.ir (H.R. Mahdiani).

Engineering Applications of Artificial Intelligence 26 (2013) 162–172

www.elsevier.com/locate/engappai
www.elsevier.com/locate/engappai
dx.doi.org/10.1016/j.engappai.2012.07.001
dx.doi.org/10.1016/j.engappai.2012.07.001
dx.doi.org/10.1016/j.engappai.2012.07.001
mailto:mahdiani@gmail.com
mailto:mahdiany@ut.ac.ir
mailto:mahdiani@pwut.ac.ir
dx.doi.org/10.1016/j.engappai.2012.07.001


There is some work to guide the designer through choosing the
most proper defuzzification method based on the application
context (Broekhoven and Baets, 2004) which is beyond the scope
of this paper. Also there are some reports which determine the
‘‘accuracy-cost’’ trade-off for different defuzzification methods in
software (Broekhoven and Baets, 2004; Lancaster and Wierman,
2003) or hardware (Phongpensri and Sripanomwan, 2009). Know-
ing this trade-off guides the designer to choose the best suitable
defuzzification method which best suites the precision require-
ments with minimum computational power demand which
results in better area, delay and power consumption in hardware
or less execution time in software implementations.

In this paper, three new defuzzification methods are intro-
duced which preserve the same accuracy of the existing methods
while providing much better implementation gains. An all-inclu-
sive survey of some well-known existing defuzzification methods,
as well as the description of the new methods is presented in the
following section. Section 3 presents the simulation results and
theoretical accuracy analysis studies to compare the accuracy of
the proposed and existing defuzzification methods. The software
and hardware implementation aspects of new and traditional
defuzzification methods are discussed in Sections 4 and 5. The last
section concludes the paper.

2. A survey of existing and new defuzzification methods

All existing defuzzification methods might be categorized into
standard or non-standard categories (Roychowdhury and Pedrycz,
2001). The standard methods are mostly preferred due to their
feasible implementations while on the other hand, the non-
standard defuzzification methods such as BADD (Yager and
Filev, 1991; Yager and Filev, 1993a) or SLIDE (Yager and Filev,
1993b) are theoretically developed and are not widely used in
fuzzy applications (Roychowdhury and Pedrycz, 2001). As we deal
with the implementation aspects of the defuzzification methods,
the non-standard methods are not included in this paper. Also as
there is no unique convention about the naming of different
standard defuzzification methods, some of them are referenced
with different names by different authors. To address this
problem and clarify the paper terminology, a brief description of
the most important standard defuzzification methods is pre-
sented in the following and the three new defuzzification meth-
ods are introduced at the end of this section.

2.1. Existing standard defuzzification methods

The standard defuzzification algorithms which are mostly used in
experimental and industrial fuzzy control applications, fundamentally
focus on geometric area-based computations (Roychowdhury and
Pedrycz, 2001). These methods provide different accuracy-computa-
tional power trade-offs and might be easily implemented in hardware
or software. This is the main reason for their popularity. Some of
these methods such as mean of maxima are ad hoc and are not
supported by proper analytical reasoning and so, are suitable only for
some specific applications. Some other standard methods such as
center of gravity and center of sum however; should be considered as
classic methods with convenient scientific reasoning.

2.1.1. True center of gravity (COG) (Broekhoven and Baets, 2004;

Saade and Diab, 2000)

The center of gravity which is also named as the Center of Area
(COA) in some references (Roychowdhury and Pedrycz, 2001; Tao
and Yao, 1996; Watanabe et al., 1991) is a simple and elegant
method. To compute the COG output, all the rules should be
processed first and all the fuzzy membership functions (MFs) on

THEN sides of the fired rules should be combined together to form
the unified output fuzzy shape (Fig. 1a). The final defuzzified
output value is the center of gravity of this unified shape which
can be computed by exploiting discretization method. In this
method, the whole area is divided into narrow rectangles around
(xi, m(xi)) center point, to simplify the center of gravity computa-
tion process. The Eq. (1) demonstrates the COG computation
using discretization method

COG¼

Pk
i ¼ 1 ximðxiÞPk

i ¼ 1 mðxiÞ
ð1Þ

where ‘k’ is the number of discretization levels. Higher discretiza-
tion levels imply narrower rectangles which the unified shape is
divided into, and so the closer value to the real center of gravity
(Broekhoven and Baets, 2004). This method is very accurate
(Lancaster and Wierman, 2003) and is most easily implemented
in software (Lees et al., 1996). As well, there are some hardware
realizations of the COG method (Lees et al., 1996; Louverdis and
Andreadis, 2003; Reyneri, 2003; Watanabe et al., 1990, 1991).
However it has some important disadvantages. The most important

Crisp Output = 8.63

1

x
0

1

0 x

1

0
x

1

0 x

1

0
x

1

0
x

1

0
x

m1
m2

α1
α2

1

0
x

m1

1

0
xxh

1

0
x

area1

A (x)

A (x)

A (x)

A (x)

A (x)

A (x)

A (x)

A (x)

A (x) A (x)

Crisp Output = 8.66

Crisp Output = 8.69 Crisp Output = 4.0

Crisp Output = 7.25 Crisp Output = 6.75

Crisp Output = 7.05 Crisp Output = 7.875

Crisp Output = 8.57 Crisp Output = 8.83

m'1 m'2

m2

cog1

area2

cog2

m'1
area1

m'2
area2

area'1 area'2

m'1 m'2

Fig. 1. Illustration of different defuzzification methods: (a) COG, (b) COS, (c) MOA,

(d) MOM, (e) PA, (f) WPA, (g) Sparus, (h) TMA, (i) TWTMA, and (j) RWTMA.

H.R. Mahdiani et al. / Engineering Applications of Artificial Intelligence 26 (2013) 162–172 163



Download English Version:

https://daneshyari.com/en/article/381048

Download Persian Version:

https://daneshyari.com/article/381048

Daneshyari.com

https://daneshyari.com/en/article/381048
https://daneshyari.com/article/381048
https://daneshyari.com

