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a b s t r a c t

The use of electronic equipment and embedded computing technologies in modern complex

transportation systems continues to grow in a highly competitive market, in which product maintain-

ability and availability is vital. These technological advances also make fault diagnosis and maintenance

interventions much more challenging, since these operations require a deep understanding of the entire

system. This paper proposes a holonic cooperative fault diagnosis approach, along with a generic

architecture, to increase the embedded diagnosis capabilities of complex transportation systems. This

concept is applied to the fault diagnosis of door systems of a railway transportation system.

& 2012 Elsevier Ltd. All rights reserved.

1. Introduction

To deal with the complexity of modern transportation systems
(e.g., commercial aircrafts, trains, ships), an efficient maintenance
strategy is essential for maintaining and improving the availabil-
ity and reliability of assets, while minimizing maintenance and
total life-cycle ownership costs (Discenzo et al., 2002). Norma-
tively, maintenance is classified as preventive or corrective
maintenance (DIN EN 13306, 2010). While preventive mainte-
nance focuses on reducing the probability of failures by replacing
components before they fail, corrective maintenance has the
objective of returning an item back to service after a failure
occurrence. Before any corrective actions can be taken, one of the
most time-consuming step of corrective maintenance is the fault

diagnosis procedure, which consists of identifying the faulty
components to be repaired (Feldman, 2010; Khol and Bauer,
2010).

Unlike diagnosing complex industrial systems and static
machines, several considerations must be taken into account
when diagnosing complex transportation systems. In this paper,

we assume that complex transportation systems are character-
ized by the following properties:

� System complexity—a complex transportation system is
assumed to be decomposable into a set of interacting sub-
systems, composed of a control part and a controlled part.
These sub-systems are designed by several suppliers, using
computational and physical components, and heterogeneous
technologies (e.g., electrical, mechanical, hydraulic, pneumatic,
hardware and software parts) (Dievart et al., 2010).

� System variability—the sub-systems may differ from one
system to another (e.g., change of suppliers, design changes,
product evolutions) (Azarian et al., 2011).

� System environmental context—each sub-system is assumed
to have its own context, which can be either physical (e.g.,
climate impact, vibrations, electromagnetic disturbance) or
informational (e.g., functioning mode, component states)
(Monnin et al., 2011).

� System maintainability—a complex transportation system is
usually linked to a stationary maintenance center and needs to
communicate with it (Jianjun et al., 2007). In addition, main-
tenance operations cannot be executed immediately in the
system (Umiliacchi et al., 2011).

To allow the diagnosis of this kind of complex transportation
systems, a diagnosis system must be defined. This diagnosis
system must not interfere with the normal operation of any
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sub-system. This no-intrusiveness constraint is mandatory.
In this paper, a diagnosis system is assumed to fulfill the
following requirements:

� Accuracy—the diagnosis system must be adapted for isolating
uniquely the faulty components among various intercon-
nected sub-systems.

� Ease of explanations—the diagnosis system must allow a user
to understand how the diagnosis procedure came to the
results.

� Adaptability—the diagnosis system must be adapted when
changes in components and sub-systems design occur.

� Reactivity—diagnosis results must be delivered in a timely
manner to the maintenance center in order to improve the
maintenance management.

� Confidence—the diagnosis system must avoid producing false
alarms.

Through the continued advances in infotronics and in com-
munication technologies (Clarhaut et al., 2011), intelligent diag-
nosis systems based in particular on artificial intelligence (AI) and
multi-agents (MAS) allow the diagnosis procedure to be auto-
mated on-line, observing continuously the system (Campos,
2009; Ng and Srinivasan, 2010). In this context, the main
contribution of this paper is to propose a fault diagnosis approach
that supports all the previously introduced assumptions.
This approach is applied within a joint research-industry project,
called SURFER (SURveillance active FERroviaire, translated
as ‘‘active train monitoring’’), led by Bombardier-Transport. The
aim of the SURFER project is to provide a more advanced solution
for the on-line diagnosis of incipient failures and faults that can
occur during the train service, besides the existing ORBITA system
developed by Bombardier-Transport in 2006 (Orbita-BT, 2006).

This paper is organized as follows. Section 2 presents a
literature review about condition monitoring and diagnosis stan-
dards, along with the main diagnosis methods. This section
highlights the limits of currently-used diagnosis approaches,
emphasizing the need of a robust embedded diagnosis. Section
3 proposes an embedded decentralized cooperative fault diag-
nosis approach, based on a generic holonic model. Section 4
applies the proposed embedded diagnosis model for advanced
fault diagnosis of train door systems, within the context of the
SURFER project. Section 5 presents the experimental platform
used for the implementation of the holonic diagnosis architecture.
Section 6 exhibits the first results obtained in the implementation

in a real train. Finally, Section 7 offers conclusions and perspec-
tives for future research.

2. Condition monitoring for diagnosing transportation
systems

A condition monitoring system involves raw data acquisition,
processing, analysis and interpretation of faults to provide useful
maintenance information (Campos, 2009). In this section, we refer
to condition monitoring as a means of applying on-line fault
diagnosis procedure to a complex transportation system, focusing
on diagnosing abrupt faults rather than diagnosing incipient
faults or performance degradation. Then, the literature is sur-
veyed on condition monitoring, diagnosis standards, and diag-
nosis architectures. Next, the main diagnosis methods are
analyzed. According to the requirements of a diagnosis system,
first a diagnosis architecture is chosen, followed by the selection
of a relevant diagnosis method.

2.1. Condition monitoring and diagnosis standards

The reference standards for condition monitoring in industry
and transportation have been registered under the ISO 13374.
This standard defines a generic model of a condition monitoring
architecture, using six-layer processing blocks (ISO 13374-1,
2003). These successive layers progress from raw data acquisition
to useful maintenance advisories, as the data evolve into informa-
tion. The layers defined by this standard are: (1) data acquisition,
(2) data manipulation, (3) state detection, (4) health assessment,
(5) prognostic assessment and (6) advisory generation. In the
prescribed model, the first three layers are assumed to be
technology-dependent on the monitored system. From there,
the diagnosis layer #4 (health assessment) may handle incipient
or abrupt faults, while the prognosis layer #5 is specific for
incipient faults analysis (IAEA, 2007). The last layer aims at
delivering recommendations on maintenance actions or opera-
tional changes based on information delivered by lower layers.

2.2. Condition monitoring and diagnosis architectures

Focusing on the diagnosis layer of the prescribed model (i.e,
layer #4), Fig. 1 illustrates the two fundamental partitioning
approaches: off-board diagnosis and on-board diagnosis (Alanen
et al., 2006; Bengtsson, 2003).

Fig. 1. Diagnosis partitioning: (a) off-board diagnosis and (b) on-board diagnosis.
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