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a b s t r a c t

A novel framework based on the use of dynamic neural networks for data-based process monitoring,

fault detection and diagnostics of non-linear systems with partial state measurement is presented in

this paper. The proposed framework considers the presence of three kinds of states in a generic system

model: states that can easily be measured in real time and in-situ, states that are difficult to measure

online but can be measured offline to generate training data, and states that cannot be measured at all.

The motivation for such a categorization of state variables comes from a wide class of problems in the

manufacturing and chemical industries, wherein certain states are not measurable without expensive

equipments or offline analysis while some other states may not be accessible at all. The framework

makes use of a recurrent neural network for modeling the hidden dynamics of the system from

available measurements and uses this model along with a non-linear observer to augment the

information provided by the measured variables. The performance of the proposed method is verified

on a synthetic problem as well as a benchmark simulation problem.

& 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Process monitoring and fault detection methods may broadly
be divided into two classes: signal-based methods and model-
based methods, and a large number of applications may be found
in literature for both the methods (Isermann, 2006; Patton et al.,
2000). Signal-based methods (Chen and Liao, 2002, Qin, 2003)
generally do not need mathematical models of the system but
need data from faulty conditions to perform fault detection and
diagnostics. This is desirable in many real world applications as
the process may be too complex to model mathematically (as in
manufacturing applications) or the effort required in developing a
model may not be justifiable economically. Model-based methods
(El-Farra and Ghantasala, 2007; Zarei and Poshtan, 2010; Castillo
et al., 2012) on the other hand make use of the fact that faults
may change the nature of the relationship between the measured
inputs and outputs and thus allow the detection of deviations in
quantities that are not directly observed. Fault detection may
usually be done without the need for data from faulty conditions.
Fault diagnosis, however, may, still require data from faulty
conditions (Uppal et al., 2006), which is usually difficult to
acquire in many applications. Therefore, this paper proposes an
approach that tries to retain the benefits of both signal-based and
model-based methods by developing a hybrid data and model-
based framework that can learn dynamic process models from

historical data and diagnose a class of faults without the need for
data from faulty conditions or complex physics-based models of
the system.

For many industrial systems, approximate data-based dynamic
process models can be developed from historical process data using
techniques such as auto regressive models with exogenous inputs
(ARX) and neural networks. Recurrent Neural Networks (RNN) in
particular have been found to be very effective in modeling non-
linear dynamic systems (Hou et al., 2007; Lee et al., 2001) and can be
used to approximate any discrete dynamic system, which can be
represented in the state space form, to any desired degree of
accuracy (Jin et al., 1995). This developed data-based model may
then be used for fault detection and isolation (FDI).

Model based fault detection and isolation methods have also
been called as analytical redundancy methods as they involve the
comparison of measured signals with their estimates, based on
models subject to the same input condition, to generate residuals.
Many model based methods have been proposed in the literature
and a short survey of these methods is provided here. Diagnostic
information may be extracted from these residuals using simple
limit checks or statistical tests (Montgomery, 2008). More robust
methods of evaluating residuals including the use of adaptive
threshold evaluation (Patton et al., 2000) and non-linear classi-
fiers (Chen and Patton, 1999) have also been proposed. The
generation of residuals, however, remains the focus of most
model based FDI methods. Residuals can be generated using any
of a number of different methods mentioned below. A direct
comparison of measured outputs with physics based models
(Moskwa et al., 2001; Song et al., 2003; Conatser et al., 2004) or
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data based models (Capriglione et al., 2003; Calado et al., 2006;
Uppal et al., 2006; Witczak et al., 2006) is the most straight-forward
way to generate residuals. Parity relation approaches generate the
residual based upon consistency checking on system input and
output data over a time window (Gertler, 1997). Parameter estima-
tion approaches directly make use of system identification techni-
ques to isolate changes in critical but unmeasurable system
parameters (Isermann, 1993). Observer based methods for determi-
nistic (Edwards et al., 2000; Hou and Patton, 1996; Frank and Ding,
1997) and stochastic systems (Tsai et al., 2007; Kobayashi and
Simon, 2006; Li et al., 2005; Xiong et al., 2007) can be used to
estimate unmeasured system states/parameters and with suitably
designed gain matrices, they can be used to generate residuals which
are robust to modeling uncertainties. A bank of dedicated observers
can be used to isolate faults for multi-input multi-output systems.
The problem of robust model-based FDI in non-linear process
systems, especially for actuators, has received significant attention
in recent years (El-Farra and Ghantasala, 2007; Zarei and Poshtan,
2010; Castillo et al., 2012). Variations in the structure of the observer
banks, such as all input one output, all input all but one output, one
input all output, etc. can be used to isolate actuator, sensor and
component faults (Isermann, 1997). The parity relation based
approach, the observer-based approach and the parameter
estimation-based approaches are all related to each other and the
correspondence between these approaches may be found in (Chen
and Patton, 1999). In this work the observer based approach is used
because of the flexibility it affords. In spite of using sophisticated
training methods, the use of data-based models, such as the RNN,
introduces additional uncertainty regarding model predictions and
this should be given due consideration by any model-based fault
detection and isolation scheme. While there are a number of non-
linear observers that can be considered for the task, such as the
Extended Kalman Filter (Reif et al., 1999) or the Unscented Kalman
Filter (Julier and Uhlmann, 2004), this paper uses a stochastic non-
linear observer called the Adaptive Divided Difference Filter (ADDF),
which explicitly accounts for model error and is robust to it
(Subrahmanya and Shin, 2009).

Most model-based methods for FDI developed so far assume the
availability of a first-principles based model wherein important states
of the system are part of the model and may be estimated if
necessary. Data-based dynamic models on the other hand may not
have interpretable states and if some of the important states of the
system need to be estimated on-line (for the purpose of monitoring
the process) from input–output measurements, then special care has
to be taken to ensure that these states are modeled explicitly. In
practice, the instrumentation required to measure all states may not
be available and the data available for modeling would include
inputs, outputs and selected states. The proposed framework then
considers this important practical scenario, where there are three
kinds of states in the system model: states that can easily be
measured in real time and in situ, states that are difficult to measure
online but can be measured offline to generate training data, and
states that cannot be measured at all. The motivation for such a
categorization of state variables comes from a wide class of problems
in the manufacturing and chemical industries, wherein certain states
(such as surface roughness in manufacturing or intermediate stream
compositions in chemical processes) are not measurable without
expensive equipments or offline analysis while some other states
may not be accessible at all. The goal then is to distinguish faults
belonging to three classes—actuator faults (these are assumed to
change the influence of an input on the model), component faults (it
is assumed that these faults can be detected and diagnosed by
monitoring certain states of the system) and sensor faults (these are
assumed to affect the measured states). While it is possible that there
may be a number of faults in complex systems, which affect multiple
elements (inputs, states and outputs), it is believed that the above

categorization is still useful to get a general idea of the location and
effect of a fault. To the best of the authors’ knowledge, this is the first
paper considering the combination of a data-based model-based FDI
system with this practically important categorization of state
variables.

A block diagram describing the architecture of the proposed
framework is shown in Fig. 1. The methods used in the three
major blocks in Fig. 1 will be described in the following sections.
It should be noted that our works on various individual modules
in Fig. 1 have been reported elsewhere and the main contribution
of this work is the combination of these individual modules and
the validation of the entire data-based fault detection and
diagnostics scheme. First, the use of recurrent neural networks
is proposed for the purpose of learning the dynamics of a system
and a suitable structure and training algorithm for the RNN model
is given (Subrahmanya and Shin, 2010). A description of the
adaptive divided difference filter (ADDF), a robust stochastic non-
linear observer for discrete-time systems (Subrahmanya and Shin,
2009), is given next. This is followed by a section on the fault
detection and isolation logic for input (actuator), state (compo-
nent) and output (sensor) faults. Finally a couple of examples, one
based on a synthetic state-space model and one based on the
DAMADICS simulation benchmark (Bartys et al., 2006), are given
to demonstrate the feasibility of the proposed method.

2. System modeling using recurrent neural networks

Although a number of training methods have been proposed
for RNNs as mentioned in the introduction, all these methods require
a considerable amount of parameter and structure tuning from an
experienced user. In order to automate the process of structure and
parameter learning for RNNs, the authors recently proposed a
constructive training method for RNNs (Subrahmanya and Shin,
2010). This method ensures the stability of an RNN with a single
hidden layer throughout the training process as additional nodes are
added to its hidden layer. The model structure and training algorithm
is presented here. For more details about the properties and perfor-
mance of the training method the reader is referred to Subrahmanya
and Shin (2010).

An RNN can be represented in the discrete state space form with
all the measured variables (including the measured states of the
original system) as outputs and the hidden node activations as the
states. Assume that the discrete state space equation representing
the system is

xkþ1 ¼ f ðxk,ukÞ

yk ¼ hðxkÞ ð1Þ

where xkARn is the state vector, ykARp is the output vector, ukARm is
the input vector and f(xk,uk) is the non-linear plant model and h(xk) is
the non-linear observation equation. Using the capability of feed
forward networks with a single hidden layer of sigmoidal units to
represent any Lipschitz continuous function to an arbitrary degree of
accuracy, the functions f and g may be replaced by equivalent feed
forward networks as given below, where s denotes the tanh function

f ðxk,ukÞ ¼ VfsðWf xkþBf ukþhf Þ

hðxkÞ ¼VhsðWhxkþhhÞ ð2Þ

Here, Wf (Wh) and Bf denote weights of a single-hidden layer
neural network from the input layer to the hidden layer, hf (hh)
denotes the biases of the hidden nodes and Vf (Vh) denotes the
weights from the hidden layer to the output layer to model
f(xk,uk) (h(xk)). After some manipulation, it may be shown that the
dynamics described by (2) can be represented by the system of
equations given in (3). Eq. (3) represents a single hidden layer
RNN with W, B, h and V as the weights and Zk as the hidden node
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