
Parallel scalable hardware implementation of asynchronous discrete particle
swarm optimization

Amin Farmahini-Farahani �, Shervin Vakili, Sied Mehdi Fakhraie, Saeed Safari, Caro Lucas

School of Electrical and Computer Engineering, University of Tehran, North Kargar Ave., Tehran 14395-515, Iran

a r t i c l e i n f o

Article history:

Received 13 June 2007

Received in revised form

17 August 2009

Accepted 1 December 2009
Available online 12 January 2010

Keywords:

Evolutionary algorithms

Particle swarm optimization

Parallel architecture

Multiprocessing

Field programmable gate array (FPGA)

System-on-a-programmable-chip

Real-time applications

a b s t r a c t

This paper presents a novel hardware framework of particle swarm optimization (PSO) for various kinds

of discrete optimization problems based on the system-on-a-programmable-chip (SOPC) concept. PSO

is a new optimization algorithm with a growing field of applications. Nevertheless, similar to the other

evolutionary algorithms, PSO is generally a computationally intensive method which suffers from long

execution time. Hence, it is difficult to use PSO in real-time applications in which reaching a proper

solution in a limited time is essential. SOPC offers a platform to effectively design flexible systems with

a high degree of complexity. A hardware pipelined PSO (PPSO) Core is applied with which the required

computational operations of the algorithm are performed. Embedded processors have also been

employed to evaluate the fitness values by running programmed software codes. Applying the

subparticle method brings the benefit of full scalability to the framework and makes it independent of

the particle length. Therefore, more complex and larger problems can be addressed without modifying

the architecture of the framework. To speed up the computations, the optimization architecture is

implemented on a single chip master–slave multiprocessor structure. Moreover, the asynchronous

model of PSO gains parallel efficacy and provides an approach to update particles continuously. Five

benchmarks are exploited to evaluate the effectiveness and robustness of the system. The results

indicate a speed-up of up to 98 times over the software implementation in the elapsed computation

time. Besides, the PPSO Core has been employed for neural network training in an SOPC-based

embedded system which approves the system applicability for real-world applications.

& 2009 Elsevier Ltd. All rights reserved.

1. Introduction

Evolutionary algorithms (EAs) are general-purpose search
algorithms used to solve difficult numerical optimization pro-
blems by simulating natural evolution over populations of
candidate solutions (Schwefel, 1981; Holland, 1975; Fogel,
1994; Bäck et al., 1997). Numerical optimization has been widely
used in engineering to solve a variety of NP-complete problems in
areas such as structural optimization, neural network training,
layout and scheduling problems, and control system analysis and
design (Fogel, 1991; Bäck et al., 1997; Zitzler et al., 2000; Freitas,
2002; Bäck, 1996; Deb, 2001; Dasgupta and Michalewicz, 1997).
Particle swarm optimization (PSO) is one of the emerging
computation techniques that was developed in 1995 (Kennedy

and Eberhart, 1995) as an evolutionary optimization methodology
over a complex solution space. PSO deals with the concept of
social interaction. It was inspired by the social behavior of bird
flocking or fish schooling. The PSO algorithm exploits the gathered
information of the particles in a swarm during their food-
searching activities and affects the trajectory of particles. Each
particle flies through the search space with a velocity which is
dynamically adjusted according to its own experience as well as
the experiences of its neighbors. Therefore, the particles have a
tendency to fly towards the better and better search area over the
progress of search process.

Like the other evolutionary computational techniques, PSO is a
derivative-free, stochastic and population-based search algorithm
which is initialized with a population (swarm) of random
solutions, called particles. Unlike the other evolutionary compu-
tation techniques, each particle in PSO is also associated with a
velocity.

The PSO-based approaches converge faster than genetic-algo-
rithm-(GA)-based techniques, and require less computational com-
plexity (Song and Gu, 2004). PSO has few parameters to adjust and
general values for these parameters are not devastative (Carlisle and
Dozier, 2001). Moreover, PSO is well suited to large-scale

ARTICLE IN PRESS

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/engappai

Engineering Applications of Artificial Intelligence

0952-1976/$ - see front matter & 2009 Elsevier Ltd. All rights reserved.

doi:10.1016/j.engappai.2009.12.001

� Corresponding author. Silicon Intelligence and VLSI Signal Processing Labora-

tory of School of Electrical and Computer Engineering, University of Tehran, North

Kargar Ave., Tehran 14395-515, Iran. Tel.: +98 21 88013196;

fax: +98 21 88778690.

E-mail addresses: a.farmahini@ece.ut.ac.ir (A. Farmahini-Farahani),

s.vakili@ece.ut.ac.ir (S. Vakili), fakhraie@ut.ac.ir (S.M. Fakhraie),

saeed@ut.ac.ir (S. Safari), lucas@ipm.ir (C. Lucas).

Engineering Applications of Artificial Intelligence 23 (2010) 177–187

www.elsevier.com/locate/engappai
dx.doi.org/10.1016/j.engappai.2009.12.001
mailto:a.farmahini@ece.ut.ac.ir
mailto:s.vakili@ece.ut.ac.ir
mailto:fakhraie@ut.ac.ir
mailto:saeed@ut.ac.ir
mailto:lucas@ipm.ir


ARTICLE IN PRESS

and complex optimization problems and is mainly used in
NP-complete problems (Hu et al., 2004). PSO is inherently parallel
since each particle can be considered as an independent agent
(Schutte et al., 2004). However, the iterative evolution process of
PSO like other heuristic algorithms is time consuming. For many
real-world applications, PSO can run for days, even when it is
executed on a high performance workstation. Computational
parallelism is an applicable approach to alleviate the problem of
the prolonged execution time of PSO.

Particle swarm engines are one instance of the bio-inspired
computing systems that is employed in the embedded systems.
Considering the real-time requirements for embedded applica-
tions, most embedded processor cores lack the performance to
run particle swarm computations or to emulate other bio-inspired
subsystems. Therefore, employing particle swarm in embedded
applications requires efficient custom hardware intellectual
property (IP) cores implemented for them (Mathew et al., 2004).
On the other hand, the competitive market of embedded systems
requires solutions that take shorter time in design, are cost-
efficient in development, have flexibility in utilization, expose
simplicity in integration, and exhibit reusability (Zhang et al.,
2001). A particle swarm IP core for embedded systems should
offer these capabilities as an off-the-shelf component. Never-
theless, obtaining an optimal solution (if exists) in real time for
large-scale problems is difficult. Since making a decision in a
limited time is vital for many practical problems, obtaining a
suitable solution in real time is much better than finding the
optimal solution off-line. Thus, our objective is to find appropriate
solution in a limited time.

The complexity of the modern chips is rising and fundamental
changes in system design are being more essential. The system-
on-a-programmable-chip (SOPC) concept is bringing a major
revolution in the design of integrated circuits, due to the
flexibility it provides and the complexity it caters to. The SOPC
embedded systems refer to the packaging of all the necessary
electronic functions, memory blocks, interfaces, microprocessors,
and so forth of different functions onto a single chip to form a
complete electronic system. SOPC brings the combination of
programmable logic and embedded processors, mixing software
and hardware. Thus, SOPC technology allows all of the various
components to be integrated together on a chip rather than
connecting those components on a circuit board to construct an
electronic system.

In this paper, an on-chip multiprocessing SOPC-based archi-
tecture has been proposed for high performance realization of the
particle swarm algorithm in embedded systems to speed up its
calculations. The proposed architecture can obtain high computa-
tional power due to its parallel processing architecture. In
addition, the software fitness evaluator along with the para-
meterized hardware PSO Core provide a scalable framework for a
range of discrete PSO applications. Hence, the architecture is
intended to facilitate the use of PSO-based techniques in
embedded systems. The implemented system performs fitness
evaluation in software and all other PSO operations in hardware.
In addition, the employed master–slave parallel system uses an
asynchronous and discrete model of PSO. The proposed system
has been implemented on an Altera Stratix Development Kit, and
its performance has been compared with that of the correspond-
ing software implementation. Test beds are MaxOne problem and
optimizing four classic arithmetic functions.

The remaining sections are organized as follows: Section 2
reviews the previous work on applications and hardware
implementations of the PSO algorithm. Section 3 gives an
overview of the basis of PSO, different ways to deal with particles,
and parallel characteristics of PSO. The proposed framework is
described in Section 4. Also, the implementation of the system

and details of the employed architecture are described in this
section. Section 5 explains the experimental results over five
benchmarks and compares the results with the software-based
implementation as well as pure-hardware implementation. Sec-
tion 6 presents an adoption of our PSO implementation for neural
network training as a case study of a real-world application.
Section 7 concludes the paper and explains our future work.

2. Previous work

Particle swarm optimization is a new population-based
stochastic optimization technique. More and more researchers
are interested in this new algorithm and it has been investigated
from various perspectives (Song and Gu, 2004; Hu et al., 2004). To
reduce the execution time of heuristic algorithms, several
methods have been offered, including parallel and/or distributed
processing of these algorithms along with their hardware
implementation (Konfrst, 2004; Chen et al., 2005; Calaor et al.,
2002; Hidalgo et al., 2003).

Different types of parallel implementations of PSO have been
introduced in literature. Early parallel PSO implementations have
employed synchronous evolution methods (Schutte et al., 2004;
Chang et al., 2005; Cui and Weile, 2005; Jin and Rahmat-Samii,
2005), while asynchronous evolution has been emphasized
recently (Koh et al., 2006; Venter and Sobieszczanski-Sobieski,
2005). Parallel implementations of PSO are mostly based on
cluster computing and message passing interface protocol (Koh
et al., 2006; Schutte et al., 2004, 2003; Venter and Sobieszczanski-
Sobieski, 2005; Gies and Rahmat-Samii, 2003; Jin and Rahmat-
Samii, 2005).

Although different hardware approaches have been proposed
for GA so far (Zhu et al., 2006), a few hardware-based
implementations of PSO have been reported. In Kokai et al.
(2006), the authors have used hardware implementation of PSO in
an FPGA for the employment with blind adaptation of the
directional characteristic of array antennas. They have introduced
multi-swarm architecture in which each single swarm optimizes
only a single parameter of the application. However, they have
not mentioned the hardware implementation cost, achieved
frequency, and also performance.

In Reynolds et al. (2005), the authors have implemented a
modified particle swarm optimizer and neural network in FPGA.
In their architecture, many of the computations are preformed in
parallel to reduce computation time as compared to software
implementation. They have employed two Xilinx XC2V6000
FPGAs. One FPGA was used for fitness function calculations, and
the other was used for the particle swarm operations. At 100 MHz,
their implementation was about 60 times faster than software
implementation. Also, they have not reported the hardware cost.

In Pena et al. (2006), a hybrid swarm optimization technique
has been offered to accommodate embedded or hardware
dedicated applications. Their approach does not require multi-
plication and consists of a population of neural networks in an
FPGA that are evaluated in an embedded processor and are
trained by the proposed algorithm. In Pena and Upegui (2007),
they have presented an architecture for a hardware-friendly
version of PSO. The architecture is composed of a number of
particle computation blocks connected to each other to shape a
ring topology. Each computation block consists of memory units,
a 6-stage pipelined particle update unit, and a personal best
update unit. Each computation block updates a particle, performs
particle computation, and is connected to a fitness evaluation
block. All the particles in the swarm are evaluated and updated in
parallel, increasing hardware cost linearly with the population
size. The architecture has been implemented on a Xilinx Virtex-4

A. Farmahini-Farahani et al. / Engineering Applications of Artificial Intelligence 23 (2010) 177–187178



Download English Version:

https://daneshyari.com/en/article/381112

Download Persian Version:

https://daneshyari.com/article/381112

Daneshyari.com

https://daneshyari.com/en/article/381112
https://daneshyari.com/article/381112
https://daneshyari.com

