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a b s t r a c t

Current production engines use look-up table and proportional and integral (PI) feedback control to regulate

air/fuel ratio (AFR), which is time-consuming for calibration and is not robust to engine parameter uncertainty

and time varying dynamics. This paper investigates engine modelling with the diagonal recurrent neural

network (DRNN) and such a model-based predictive control for AFR. The DRNN model is made adaptive on-

line to deal with engine time varying dynamics, so that the robustness in control performance is greatly

enhanced. The developed strategy is evaluated on a well-known engine benchmark, a simulated mean value

engine model (MVEM). The simulation results are also compared with the PI control.

& 2009 Elsevier Ltd. All rights reserved.

1. Introduction

Automotive engine emission is a major source of urban air
pollution. The spark-ignition (SI) engine exhaust gases contain oxides
of nitrogen (nitric oxide NO and small amounts of nitrogen dioxide,
NO2—collectively known as NOx), carbon monoxide (CO) and organic
compounds which are unburned or partially burned hydrocarbons
(HC) (Heywood, 1988). Governments set strict emission standards for
engines to reduce the air pollution. These regulations provide control
challenge on their own, but when combined with other regulations
and system objectives, such as fuel economy and performance, the
challenges become significant.

For SI engines one of the most important variables in determining
emissions is the AFR. In term of control engineering, the target is to
maintain the AFR at stoichiometric value (14.7) for both steady state
and transient operation, which is the best solution to minimum
emission and a widely accepted balance between power output and
fuel consumption. The stoichiometric value ensures the maximum
efficiency of three-way catalysts (TWC) so that minimum emissions.
Variations of greater than 1% below 14.7 can result in significant
increase of CO and HC emissions. An increase of more than 1% will
produce more NOx up to 50% (Manzie et al., 2001, 2002). However,
the dynamics of air manifold and fuel injection of SI engines are very
fast, severely nonlinear and with constraints imposed on the states
and inputs (Balluchi et al., 2000; Vinsonneau et al., 2003). Therefore,
they present a challenge problem to control engineers. The produc-
tion automotive engine control schemes use mainly look-up tables

and feedback controller, which take a huge effort and labours for
engine calibration and is not robust to mechanical wear of engine
parts and engine-to-engine dynamic differences.

Different control strategies have been developed for AFR in the
past two decades, including the sliding mode control (Wang and Yu,
2007), feed-forward feedback control (Zhai and Yu, 2008), model
predictive control (MPC) using RBF models, and integral sliding mode
with RBF network compensation (Wang et al., 2006). However, the
MPC using RBF model, a feed-forward neural networks, uses back-
propagation or its other variations for training (Shayler et al., 2000).
The main drawback of this approach is that it can only provide
accurate predictions for a predetermined finite number of steps, in
most cases, only one step ahead (Al Seyab and Cao, 2007). When
prediction horizon is increased, the prediction accuracy is greatly
reduced. This drawback makes such models not well suitable for
predictive control, where multi-step predictions are desired.

In this paper, we study the applicability and the effectiveness
of DRNN-based mode predictive control to regulate the air/fuel
ratio. To model engine parameter uncertainty and severe non-
linear dynamics in different operating regions, the DRNN is on-
line adapted by dynamic back-propagation algorithm that is
implemented using automatic differentiation (AD) technique. The
control result is compared with traditional feedback control.
Finally, the robustness of the system performance to the system
uncertainty is evaluated under engine operating condition.

2. DRNN modelling

Recurrent NNs (RNN) have important capabilities that are not
found in the static feed-forward networks, such as attractor dynamics
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and the ability to store information for later use (Lapedes and Farber,
1986). Of particular interest is their ability to deal with time varying
input or output through their own natural temporal operation. Thus,
the RNN is a dynamic mapping and is better suited for dynamic
systems modelling than the static feed-forward networks. Consider-
ing the computation burden of MPC for fast dynamic system, the
diagonal recurrent neural network, instead of fully connected
recurrent neural networks (FRNN), is used in this study. The DRNN
has one hidden layer that is comprised of self-recurrent neurons from
their own output only. The signals within the hidden layer are the
feedback signals from the output layer and with different time-delays.
This gives possibility of the DRNN to model the dynamic system with
different input orders and different output orders. Since there is no
inter-links among neurons in the hidden layer, DRNN has consider-
ably fewer weights than FRNN and the network is simplified
considerably (Ku and Lee, 1995).

The DRNN output can be calculated from its input and weights
as follows.
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where f( � ) is the nonlinear activation function in hidden layer,
and the other variables and parameters can be referred to Ref. Ku
and Lee (1995).

The DRNN is trained using the dynamic back-propagation
algorithm (Wang and Zhang, 1997). Because the weights in the
feedback loop are nonlinearly related to the network output,
optimization algorithms for linear systems cannot be used.
Here, training of these weights is achieved using a so-called
dynamic back-propagation algorithm. Let y(k) and ŷðkÞ be the
actual responses of the plant and the output of the DRNN
model, then an error function for a training cycle for DRNN can be
defined as

Em ¼
1
2½yðkÞ�ŷðkÞ�2 ð5Þ

The gradient of error simply becomes
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where emðkÞ ¼ yðkÞ�ŷðkÞ is the output error between the plant and
the DRNN. The output gradients with respect to output, recurrent
and input weights, respectively, are given by
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where PðkÞ � ð@hðkÞ=@WdÞ and Q ðkÞ � ð@hðkÞ=@WhÞ and satisfy

PðkÞ ¼ f 0ðzÞ½h k�1ð ÞþWdP k�1ð Þ�; Pð0Þ ¼ 0 ð10Þ
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The weights can now be adjusted following a gradient method,
i.e., the update rule of the weights becomes
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where Z is the learning rate and Z=Zh, Zd, Zy, respectively, for the
corresponding weight matrix. Eqs. (5)–(12) define the dynamic
back-propagation algorithm (DBP) for DRNN.

The update rules call for a proper choice of the learning rate Z.
If we let Zh, Zd and Zy be the learning rate for DRNN weights Wh,
Wd and Wy, respectively, then, the DBP algorithm converges if
0o9Wd

j 9o1; j¼ 1; 2; . . .; v and the learning rate are chosen as
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Here Wy
max : ¼maxk99WyðkÞ99, xmax : ¼maxk99xðkÞ99 and 99U99 is

the sup-norm.
Except when the function is fairly simple, hand-coding of the

derivative function is a tedious and sometimes error prone job in
practical applications. And even if symbolic software is used, the
resulting expression of ð@ŷ kð Þ=@WÞ in Eq. (9) is very complex and
hard to work with. Automatic differentiation (AD) techniques has
been employed in this study to give an accurate result; i.e., there
are no truncation errors, no human errors. Given a vector
functionF : Rn-Rm, the derivative matrix A=F0 can be obtained
by employing the following four-step strategy:

1) Compute the sparsely pattern of AARm�n.
2) Compute a seed matrix SAf0; 1gn�p with the smallest p.
3) Compute the compressed matrix B=AS.
4) Recover the non-zeros of A from B.

The matrix S partitions the columns of A:

sjk ¼
1; if column aj belongs to group k

0; otherwise

(
ð16Þ
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This approach can be realized successively by automatic
differentiation using the chain rule. Moreover, the computation
efficiency and advantages of using AD in the engineering
applications was demonstrated in Bucker et al. (2002), the study
show that the technology of AD is not only applicable to small
codes but scales up to computer models consisting of thousands
of lines of code. Therefore, the output gradients with respect to
output, recurrent and input weights ð@ŷðkÞ=@WÞ is computed by
AD technique, which is implemented in C++ language using the
software package ADOL-C and interfaced to MATLAB with a MEX

warp.

3. MPC with DRNN model

Model predictive control applications have in the past been
mostly used in the process and chemical industries with
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