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a b s t r a c t

Nonlinear model predictive control (NMPC) algorithms are based on various nonlinear models. A number

of on-line optimization approaches for output-feedback NMPC based on various black-box models can be

found in the literature. However, NMPC involving on-line optimization is computationally very

demanding. On the other hand, an explicit solution to the NMPC problem would allow efficient on-

line computations as well as verifiability of the implementation. This paper applies an approximate multi-

parametric nonlinear programming approach to explicitly solve output-feedback NMPC problems for

constrained nonlinear systems described by black-box models. In particular, neural network models are

used and the optimal regulation problem is considered. A dual-mode control strategy is employed in order

to achieve an offset-free closed-loop response in the presence of bounded disturbances and/or model

errors. The approach is applied to design an explicit NMPC for regulation of a pH maintaining system. The

verification of the NMPC controller performance is based on simulation experiments.

& 2010 Elsevier Ltd. All rights reserved.

1. Introduction

Nonlinear model predictive control (NMPC) involves the solution
at each sampling instant of a finite horizon optimal control problem
subject to nonlinear system dynamics and state and input constraints
(Mayne and Michalska, 1990; Allgöwer and Zheng, 2000;
Kouvaritakis and Cannon, 2001). A survey of the numerical methods
for on-line solution of NMPC problems is given in Diehl et al. (2009).
Most recently, an advanced-step NMPC controller with reduced on-
line computational costs has been proposed in Zavala and Biegler
(2009). The NMPC algorithms are based on various nonlinear models.
Often these models are developed as first-principles models, but
other approaches, like black-box identification approaches are also
popular. In this paper we focus on explicit solution of output-
feedback NMPC problems based on black-box models.

There exists a number of NMPC approaches based on various
black-box models e.g. based on neural network models (e.g.
Nørgaard et al., 2000; Zeng et al., 2003), fuzzy models (e.g. Lepetič
et al., 2003), local model networks (e.g. Peng et al., 2007), Gaussian

Process models (e.g. Kocijan and Murray-Smith, 2005). The common
feature of these NMPC approaches is that an on-line optimization
needs to be performed in order to compute the optimal control input.
Consequently, the computation is time consuming and the real-time
NMPC implementation is limited to processes where the sampling
time is sufficient to support the computational needs. However, the
on-line computational complexity can be circumvented with an
explicit approach to NMPC, where the only computation performed
on-line would be a simple function evaluation.

It has been shown that the explicit solution to linear constrained
MPC problems has an explicit representation as a piece-wise linear
(PWL) state feedback law defined on a polyhedral partition of the
state space (Bemporad et al., 2002). The benefits of an explicit
solution, in addition to the efficient on-line computations, include
also verifiability of the implementation, which is an essential issue
in safety-critical applications. In Alessio and Bemporad (2009), the
main contributions on explicit MPC, which have appeared in the
scientific literature, are reviewed. For nonlinear MPC, the prospects
of explicit solutions are even higher than for linear MPC, since the
benefits of computational efficiency and verifiability are even more
important. Recently, several approaches to explicit solution of
NMPC problems have been suggested. An approach for efficient
on-line computation of NMPC for constrained input-affine non-
linear systems has been suggested in Bacic et al. (2003). In Johansen
(2002, 2004) and Grancharova et al. (2007a), approaches for off-line
computation of explicit sub-optimal PWL predictive controllers for
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general nonlinear systems with state and input constraints have
been developed, based on the multi-parametric nonlinear program-
ming (mp-NLP) ideas (Fiacco, 1983). It has been shown that for
convex mp-NLP problems, it is straightforward to impose toler-
ances on the level of approximation such that theoretical properties
like asymptotic stability of the sub-optimal feedback controller can
be ensured (Johansen, 2004; Bemporad and Filippi, 2006). In
Grancharova et al. (2007a), practical computational methods to
handle non-convex mp-NLP problems have been suggested that not
necessarily lead to guaranteed properties, but when combined with
verification and analysis methods give a practical tool for devel-
opment and implementation of explicit NMPC. Algorithms for
solving mp-NLP problems, including the non-convex case, are
described also in Pistikopoulos et al. (2007). It should be noted
that the mentioned methods for explicit NMPC are based on first-
principles models of the systems and they assume that the state
variables can be measured. Further, in Grancharova et al. (2007b),
an approach for off-line computation of explicit stochastic NMPC
controller for constrained nonlinear systems based on a stochastic
black-box model (Gaussian process model) has been proposed. In
addition to the mentioned methods, there exists another group of
approaches for off-line computation of sub-optimal controllers,
where the optimal solution is approximated by means of neural
networks (Parisini and Zoppoli, 1995; Parisini and Sacone, 2001;
Bertsekas and Tsitsiklis, 1998; Åkesson and Toivonen, 2006).

This paper suggests an approximate mp-NLP approach to explicit
solution of deterministic NMPC problems for constrained nonlinear
systems described by black-box models (NARX models (Chen and
Billings, 1989)). In particular, neural network NARX models are
considered (Chen et al., 1990). The approach builds an orthogonal
search tree structure of the regressor space partition and consists in
constructing a PWL approximation to the optimal control sequence by
applying the approximate mp-NLP algorithm in Grancharova et al.
(2007a). A dual-mode control strategy is proposed in order to achieve an
offset-free closed-loop response in the presence of bounded distur-
bances and/or model errors. It is similar to the dual-mode receding
horizon control concept developed in Michalska and Mayne (1993)
(based on state space models), however, here black-box models are
considered and an explicit solution of the NMPC problem is sought.
Thus, the suggested strategy consists in using the explicit NMPC (based
on NARX model) when the output variable is far from the origin and
applying an LQR in a neighborhood of the origin. The LQR design is based
on an augmented linear ARX model which takes into account the
integral regulation error. The main motivations behind the dual-mode
control strategy are the following. First, it may be beneficial to use a
separate linear model in a neighborhood of the equilibrium, since the
nonlinear black-box model may not have accurate linearizations unlike
a first-principles model, and the requirement for accurate control is
highest at the equilibrium. Second, it leads to a reduced complexity of
the explicit NMPC compared to augmenting the nonlinear model with
an integrator to achieve an integral action directly in the NMPC.

The following abbreviation and notation will be used in the
paper. The nonlinear model predictive control problem based on
black-box model will be referred to as BB-NMPC problem. Ag0
means that the square matrix A is positive definite. For xARn, the
Euclidean norm is JxJ¼

ffiffiffiffiffiffiffi
xT x
p

and the weighted norm is defined for
some symmetric matrix Ag0 as JxJA ¼

ffiffiffiffiffiffiffiffiffiffi
xT Ax
p

.

2. Formulation of the BB-NMPC problem as an mp-NLP problem

2.1. Modelling of dynamic systems with NARX models

The black-box identification of nonlinear systems is an area
which is quite diverse. It covers topics from mathematical approx-
imation theory, estimation theory, non-parametric regression and

concepts like neural networks, fuzzy models, wavelets etc. A unified
overview of this topic is given in Sjöberg et al. (1995).

Consider a nonlinear dynamical system with input uARm and
output yARp and let U ¼ ½uð1Þ,uð2Þ, . . . ,uðMÞ� and Y ¼ ½yð1Þ,yð2Þ, . . . ,
yðMÞ� be sets of observed values of u and y to the number of M. Based
on these data, the dynamics of the system can be described with a
NARX model, where the future predicted output y(i+1) depends on
previous estimated outputs, as well as on previous control inputs:

yðiþ1Þ ¼ f ðzðiÞ,yÞ, ð1Þ

zðiÞ ¼ ½yðiÞ,yði�1Þ, . . . ,yði�LÞ,uðiÞ,uði�1Þ, . . . ,uði�LÞ�: ð2Þ

Here, L is a given lag, i denotes the consecutive index of data samples
ðiZLÞ, z(i) is the so called regressor vector, f is the function realized
by the black-box model, and y is a finite-dimensional vector of
parameters. Thus, the function f is a concatenation of two map-
pings: one that takes the increasing number of the past values of the
observed inputs and outputs and maps them into the finite
dimensional regressor vector and one that takes this vector to the
space of the outputs. The nonlinear mapping from the regressor

space to the output space can be of various kinds. In our case we will
use neural network with sigmoid basis functions in the hidden layer
and linear basis functions in the output layer. This form of neural
network is called multilayer perceptron (MLP), which is probably
the most frequently considered member of the neural network
family (e.g. Nørgaard et al., 2000) and can be used as an universal
approximator. This particular choice was subjective. Any other
choice of regressor vector composition or any other choice of
mapping is possible until it enables satisfactory description of
the modelled dynamic system. The results given in the continuation
of the paper are not limited to MLP approach only.

The parameters of the MLP are the weights of its units. After the
structure (number of layers and units) is determined, the model
parameters are obtained with optimization, based on a chosen cost
function. This cost function is most frequently a least squares combina-
tion of errors between estimated and measured output signals:

E¼
1

2M

XM
i ¼ 1

JyðiÞ�ŷðijyÞJ2, ð3Þ

where ŷðijyÞ is estimated output signal, y is a vector containing the
weights, and M is the number of measured output signals y(i). The
quality of prediction can be assessed with evaluation of residuals,
estimation of the average prediction error or visualization of the
network model’s ability to predict. The reader is referred to Nørgaard
et al. (2000) for more details.

2.2. Formulation of the BB-NMPC problem

Consider the discrete-time nonlinear system:

xðtþ1Þ ¼ hðxðtÞ,uðtÞÞ, ð4Þ

yðtÞ ¼ gðxðtÞ,uðtÞÞ, ð5Þ

where xðtÞARn, uðtÞARm, and yðtÞARp are the state, input and
output vectors, and h : Rn

�Rm-Rn and g : Rn
�Rm-Rp are

nonlinear functions. The following input and output constraints
are imposed on the system (4)–(5):

uminruðtÞrumax, yminryðtÞrymax: ð6Þ

Assume that the dynamics of the nonlinear system (4)–(5) is
approximated with an MLP neural network with NARX structure
of the form (1)–(2). Then for tZL, define a modified regressor vector:

~zðtÞ ¼

½yðtÞ,yðt�1Þ, . . . ,yðt�LÞ,

uðt�1Þ, . . . ,uðt�LÞ� if L40,

yðtÞ if L¼ 0,

8><
>: ð7Þ
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