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a b s t r a c t

In the present work, a constructive learning algorithm was employed to design a near-optimal one-

hidden layer neural network structure that best approximates the dynamic behavior of a bioprocess.

The method determines not only a proper number of hidden neurons but also the particular shape of the

activation function for each node. Here, the projection pursuit technique was applied in association with

the optimization of the solvability condition, giving rise to a more efficient and accurate computational

learning algorithm. As each activation function of a hidden neuron is defined according to the

peculiarities of each approximation problem, better rates of convergence are achieved, guiding to

parsimonious neural network architectures. The proposed constructive learning algorithm was

successfully applied to identify a MIMO bioprocess, providing a multivariable model that was able to

describe the complex process dynamics, even in long-range horizon predictions. The resulting

identification model was considered as part of a model-based predictive control strategy, producing

high-quality performance in closed-loop experiments.

& 2008 Elsevier Ltd. All rights reserved.

1. Introduction

Artificial neural networks (ANN) have been widely applied
to the identification and control of nonlinear dynamic systems
(Ng, 1997). One of the main reasons for this success is the
universal approximation capability of ANN, i.e., such models are
able to approximate to arbitrary accuracy any continuous
mapping defined on a compact (closed and bounded) domain
(Jones, 1987; Cybenko, 1989; Hornik, 1989). However, due to their
generic structure, neural models usually require the estimation of
a large number of parameters. Problems related to computational
procedures necessary to achieve good results, including definition
of the neural network dimension, choice of nonlinear activation
functions, and the search for the optimum weight set, are still a
drawback to a wider use of ANN (Kosko, 1997; Haykin, 1999; Dote
and Ovaska, 2001). Another aspect to be considered is the
generalization capability associated with supervised learning
techniques when applied to universal approximators (Geman
et al., 1992).

To get around these problems, Von Zuben and Netto (1995)
presented a unit-growing learning (UGL) approach that corres-

ponds to the projection pursuit learning (PPL) in association with
the optimization of the solvability condition. The improved PPL
is a constructive learning algorithm (Kwok and Yeung, 1997)
characterized by a more efficient and accurate computational
procedure for non-parametric regression (Von Zuben and Netto,
1997). The solvability condition states that a neural network with
one nonlinear hidden layer and one linear output layer is
theoretically able to learn any input–output continuous mapping,
given that the number of nodes of the hidden layer is capable of
reproducing the dimensionality of the input space.

Model predictive control (MPC) algorithms have been widely
used in industrial processes in recent years (Henson, 1998). These
algorithms are well suited for high performance control of
constrained multivariable processes, mainly because explicit
pairing of input and output variables is not required, and
constraints can be directly incorporated into the controller design
(Henson, 1998). On the other hand, most of the industrial
applications use linear dynamic models (Qin and Badgwell,
1997; Piché et al., 2000). Although the use of nonlinear models
may improve the control algorithm performance in a rate not
achievable by linear approaches, the development of such models
is usually associated with challenging design tasks (Piché et al.,
2000).

In recent years, there has been a strong interest in the use of
neural networks to describe chemical processes, due to their
ability to approximate highly nonlinear systems. Different
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architectures of neural networks have been used as nonlinear
models to advanced control algorithms (Zhan and Ishida, 1997;
Qin and Badgwell, 1998; Rohani et al., 1999; Kambhampati et al.,
2000). Hussain (1999) presented a review of neural network
applications in process control, pointing out that these nonlinear
input–output models are capable of identifying the system in a
great number of cases, and can be incorporated into various well-
known nonlinear control methods.

In spite of the existence of several proposals in the literature
concerning neural network architectures as identification models
for predictive control, optimization procedures for the automatic
definition of the neural network dimension, and for the choice of
the best set of activation functions for the hidden neurons are still
deserving a deeper attention, mainly because a successful solution
to both optimization problems will certainly guide to a parsimo-
nious identification model.

The case study considered here is an extractive alcoholic
fermentation process (Silva et al., 1999). One of the options to
improve the productivity of this process is the continuous
extraction of ethanol. Several schemes combining fermentation
with a separation process have been proposed (Costa et al., 2001).
For instance, Silva et al. (1999) have shown that a scheme
combining a fermenter with a vacuum flash vessel presents
several positive features and better performance than an
industrial conventional process. Another important aspect to be
considered in the optimization of the alcoholic fermentation
process is the development of an efficient control strategy, since it
can minimize costs and environmental impact by maintaining the
process under optimum conditions. However, biotechnological
processes are characterized by their complex dynamics, such as
inverse response, dead time and strong nonlinearities. For these
reasons, modeling and control of those systems are still important
problems that have to be solved.

In the present work, the flexibility of the UGL approach
(Von Zuben and Netto, 1995, 1997)—that simultaneously
addresses the proper definition of the neural network dimension,
the choice of nonlinear activation functions, and the search for the
optimum weights set—is properly explored and applied as an
effective tool to model and control the extractive alcoholic
fermentation process developed by Silva et al. (1999).

The main objective of this work was to develop a MIMO UGL
neural model-based predictive control algorithm for the afore-
mentioned extractive alcoholic fermentation process (Silva et al.,
1999). In previous works, Meleiro et al. (2002, 2003, 2005, 2007)
have already investigated the capability of advanced nonlinear
approaches for process identification and predictive control,
though restricted to a simpler control configuration for this
fermentation process (Costa et al., 2002; Meleiro et al., 2005), or
considering a different fermentation process. The control meth-
odology proposed here considers constraints on manipulated and
controlled variables. Moreover, it has an identification model
providing high-quality long-range horizon predictions, and it is
capable of dealing with unmodeled load disturbances. The
associated predictive control algorithm uses the successive
quadratic programming (SQP) method to solve the optimization
problem at each sample interval.

The paper is organized as follows: Section 2 presents the
constructive learning algorithm (UGL) employed to design a
proper one-hidden layer neural network structure that best
approximates a given mapping. The case study, an extractive
alcoholic fermentation process, is detailed in Section 3. The results
of the proposed modeling and control schemes applied to this
process are discussed in Section 4. The results of the identifi-
cation task provided by the UGL neural models for this process
are shown in Section 4.1, and the proposed predictive control
scheme based on this neural model, as well as its closed-loop

performance, are presented and discussed in Section 4.2. Finally,
concluding remarks are addressed in Section 5.

2. Unit-growing learning

Although the problems related to a proper estimation of the set
of connection weights in conventional neural networks have been
solved with relative success by using advanced first- and second-
order nonlinear optimization algorithms, the remaining two
obstacles, i.e., definition of the neural network dimension and
choice of the activation functions, are still solved heuristically in
most applications by exhaustive trial and error procedures (Battiti,
1992). Bärmann and Biegler-König (1992) presented a kind of
unit-growing method that, along the learning process, enables
additional neurons to be incorporated into the hidden layer by
means of an iterative procedure, until a proper network dimen-
sion (number of nodes) is achieved. However, this method uses
monotonic functions determined arbitrarily, which does not
guarantee the optimality of the set of activation functions. Hwang
et al. (1994) successfully applied parametric models using an
orthonormal set of basis functions to solve the problem of
searching for optimal activation functions. Von Zuben and Netto
(1995) discussed the solvability condition applied to constructive
learning in neural networks, and developed an iterative procedure
that conciliates nonlinear optimization, UGL and parametric
activation function modeling, aiming at generating optimal neural
network configurations for MIMO mappings.

2.1. The UGL method

Consider the regression problem whose objective is to generate
the best approximation of an unknown multidimensional model-
free continuous function Gð�Þ defined as

Gð�Þ : R1�m
! R1�r (1)

Starting from N pairs of input–output vectors extracted from the
unknown multidimensional mapping of Eq. (1), and considering
additive error such that

sl ¼ GðxlÞ þ el (2)

we obtain, for l ¼ 1; . . . ;N:

ðxl; slÞ ¼ ð½xl1 xl2 � � � xlm�; ½sl1 sl2 � � � slr �Þ (3)

The goal of the regression task is to construct an estimator, Ĝð�Þ,
that provides the best approximation of Gð�Þ in such a way that it is
able to predict st , given xt ðtalÞ, as follows:

ŝt ¼ s̄þ ĜðxtÞ (4)

where s̄ 2 R1�r is the sample average over all the desired output
training data, given by

s̄ ¼ ½s̄1 s̄2 � � � s̄r � ¼
1

N

XN

l¼1

sl (5)

One-hidden layer neural networks can be used to estimate the
matrix of output response, S 2 RN�r , given the matrix of inde-
pendent variables, X 2 RN�m, as follows:

ŝlk ¼ s̄k þ
Xn

j¼1

wjkf j

Xm
i¼1

vijxli

 !" #
with

k ¼ 1; . . . ; r

l ¼ 1; . . . ;N
(6)

where vij ðV 2 Rm�n
Þ denotes the hidden layer weights connecting

the i-th element of the input to the j-th hidden node, wjk ðW 2Rn�r
Þ

denotes the output layer weights connecting the j-th hidden node to
the k-th output node, and f j : R! R is the trainable activation
function of the j-th hidden node.
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