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a b s t r a c t

Various techniques have previously been proposed for single-stage thresholding of images to separate

objects from the background. Although these global or local thresholding techniques have proven

effective on particular types of images, none of them is able to produce consistently good results on a

wide range of existing images. Here, a new image histogram thresholding method, called TDFD, based

on digital fractional differentiation is presented for gray-level image thresholding. The proposed

method exploits the properties of the digital fractional differentiation and is based on the assumption

that the pixel appearance probabilities in the image are related. To select the best fractional

differentiation order that corresponds to the best threshold, a new algorithm based on non-Pareto

multiobjective optimization is presented. A new geometric regularity criterion is also proposed to select

the best thresholded image. In order to illustrate the efficiency of our method, a comparison was

performed with five competing methods: the Otsu method, the Kapur method, EM algorithm based

method, valley emphasis method, and two-dimensional Tsallis entropy based method. With respect to

the mode of visualization, object size and image contrast, the experimental results show that the

segmentation method based on fractional differentiation is more robust than the other methods.

& 2008 Elsevier Ltd. All rights reserved.

1. Introduction

Thresholding is a technique of image segmentation that can be
effectively applied to many different types of images. It is
particularly useful in cases where it simplifies the image content
to such an extent that a decision can be made without further
processing. Because of its low cost in CPU time and simplicity in
implementation, thresholding has been the most popular ap-
proach to image segmentation and has been extensively reviewed
in the literature. Surveys of image thresholding techniques were
presented by Weszka (1978), Sahoo et al. (1988), and more
recently by Sezgin et al. (2004). There are a lot of approaches to
classify thresholding methods; authors in Sezgin et al. (2004)
labelled the methods according to the information they exploit,
such as histogram shape, space measurement clustering, entropy,
object attributes, spatial information and local gray-level surface.
Another classification approach consists in dividing these techni-
ques into parametric and non-parametric techniques. Compared
to the non-parametric techniques, the parametric techniques are
less efficient. The parametric thresholding methods exploit the
first-order statistical characterization of the image to be segmen-
ted. Weszka et al. (1979) proposed a parametric method where

the gray-level distribution of each class was assumed to be a
Gaussian distribution. The principle of this method consists in
applying an optimization technique to estimate the set of
Gaussian parameters that enable the best histogram fit. The
optimal threshold is calculated by minimizing the overall
probability error between these Gaussian distributions. The
drawbacks of the parametric methods are: (i) the optimal
thresholds are not always located at the intersections of the
Gaussians; (ii) their effectiveness is strongly reduced when image
histogram is unimodal or when the two classes overlap sig-
nificantly; (iii) in most cases, the distributions of the different
image classes are far from being Gaussian; (iv) execution time
becomes prohibitive when the number of classes increases.

Many authors tried to solve these problems; Synder et al.
(1990) proposed to fit the image histogram by means of a
heuristic method. Genetic algorithms were also used to solve this
problem (Yin, 1999; Bazi et al. 2007). Recently, Zahara et al. (2004)
proposed a hybrid optimization technique based on particle
swarm optimization to reduce the execution time. However, they
did not solve the problem of the algorithm initialization and proof
of the algorithm’s convergence towards the optimal threshold was
not given.

Whereas the non-parametric methods try to separate two
successive gray-level classes by optimizing some a posteriori

criterion, without estimating the parameters of the two distribu-
tions. Otsu (1979) and others (Ng, 2006) used the between-class
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variance criterion; the entropy measure was introduced by Kapur
et al. (1985). Li et al. (1993) presented a result obtained through
the use of cross-entropy and more recently Portes de Albuquerque
et al. (2004) used non-extensive entropy, also called the Tsallis
entropy criterion. Abutaleb (1989) and Feng et al. (2005) extended
the use of the entropy to the two-dimensional case; they
maximized the 2D-entropy computed from the 2D-histogram of
the original image. Other papers such as Beghdadi et al. (1995),
Brink (1992), Cheng and Chen (1999), Sahoo and Arora, (2006)
described some criteria derived from 2D-entropy.

The theory of non-integer (fractional) order derivatives dates
back to correspondence between Leibniz and L’Hospital in 1695
(see Oldham and Spanier, 1974). The basis for defining fractional
derivatives is the relationship between the integer n and the nth
order derivatives. A remarkable merit of fractional differentiation
operators is that they may still be applied to functions which are
not differentiable in the classical sense. Unlike the integer order
derivative, the fractional order derivative at point x is not
determined by an arbitrary small neighborhood of x. In other
words, the fractional derivative is not a local property of the
function. There exist several well-known approaches to unifica-
tion of differentiation and integration notions, and their extension
to non-integer orders (see Prodlubny, 2002). A general survey on
the different approaches is given in Miller and Ross (1993).

The theory of fractional derivatives was primarily developed as
a theoretical field of mathematics. More recently, fractional
differentiation has found applications in various areas: in control
theory, it is used to determinate a robust command control
(Oustaloup and Linarès, 1996); it is also used to solve the inverse
heat conduction problem (Battaglia et al. (2001); other applica-
tions are reported for instance in neuronal modelling Ramus-
Serment et al. (2002), in image processing for edge detection
(Mathieu et al., 2003), and in biomedical signal processing (Ferdi
et al. 2000).

This paper shows how using fractional differentiation with an
optimal order can provide an optimal threshold for gray-level
image segmentation. A detailed interpretation and a statistical
analysis of the fractional differentiated histogram are proposed in
terms of amplitude range variations and autocorrelation function.
To select the best thresholded image, a selection operator is also
proposed, based on a new geometric regularity criterion. The
computational complexity of the digital fractional differentiation
is also presented. This paper finally evaluates the improvement of
the proposed method over five other competing methods.

The rest of the paper is organized as follows. In Section 2, the
formalism of fractional differentiation calculus is given. In Section
3, we present the properties of the fractional differentiated image
histogram. In Section 4, we explain and analyze our thresholding
algorithm. Some experimental results are shown in Section 5.
Finally, we conclude in the last section.

2. Formalism of fractional differentiation

The Riemann–Liouville operator, for fractional differentiation,
is defined by the formula (Oldham and Spanier, 1974)

D�af ðxÞ ¼
1

GðaÞ

Z x

c
ðx� xÞa�1f ðxÞ dx (1)

with f(x) a real causal function, x40, a the fractional integration
order, Re(a) 4 0 (it can be any complex or real number), c the
integral reference and G the Euler-gamma function. When the real
part of the fractional order (a) is negative, a fractional integral
operator is in fact also defined by (1).

When c is equal to 0, the approximation of the discrete form of
fractional differentiation (DFD) of order a is then given by

(Oldham and Spanier, 1974)

gðxÞ ¼ Daf ðxÞ �
1

ha
XM
k¼0

okðaÞf ðx� khÞ (2)

where h is the sampling step, M is the number of samples, x ¼ Mh,
and the coefficients ok (a) are defined by

o0ðaÞ ¼ 1; okþ1ðaÞ ¼
ðkþ 1Þ � a� 1

ðkþ 1Þ
okðaÞ; k ¼ 0;1;2; . . . ;M � 1

(3)

The expression (2) becomes the same as Riemann–Liouville
fractional integral when h tends toward zero. From the expression
(2), the function g(x) can be interpreted as the output function of a
discrete filter, the input of which is f(x). Its impulse response is
then given by (Battaglia et al. 2001)

hðkÞ ¼
�okðaÞ=ha; k ¼ 1;2; :::;M

0; k ¼ 0

(
(4)

A positive real part for fractional differentiation order a is
chosen for (3), so the fractional integral (1) can be computed.
Definition (2) shows that the fractional integral of a function takes
into account the past of the function f. More details about the
definition of the fractional differentiation are given in Oldham and
Spanier (1974) and Prodlubny (2002).

3. Properties of the differentiated image histogram

In this section the statistical properties and the range
amplitude variation of the differentiated image histogram are
presented.

3.1. Histogram range variation

To illustrate the interpretation of the fractional differentiated
function with negative or positive order (also called right-sided
fractional integral), a non-negative and causal function f is
considered.

The result of applying the digital fractional differentiation
(DFD) to the function considered is shown in Fig. 1. Different plots
of the fractional differentiated function, obtained with different
fractional differentiation orders, are presented in Fig. 1. The
application of the fractional differentiation provides a compressed
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Fig. 1. Decreasing of amplitude range with a40. Original causal and non-negative

function (dashed line) and fractional differentiated function (continuous line) with

a varying from 0.1 to 0.6 (step ¼ 0.1).
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