
Design of fractional-order PIlDm controllers with an improved
differential evolution

Arijit Biswas a, Swagatam Das a,�, Ajith Abraham b, Sambarta Dasgupta a

a Department of Electronics and Telecommunication Engineering, Jadavpur University, Kolkata, India
b Norwegian University of Science and Technology, Norway

a r t i c l e i n f o

Article history:

Received 21 April 2008

Accepted 4 June 2008
Available online 2 September 2008

Keywords:

Differential evolution

Fractional calculus

PID controllers

Fractional-order controllers

Evolutionary algorithms

a b s t r a c t

Differential evolution (DE) has recently emerged as a simple yet very powerful technique for real

parameter optimization. This article describes an application of DE to the design of fractional-order

proportional–integral–derivative (FOPID) controllers involving fractional-order integrator and frac-

tional-order differentiator. FOPID controllers’ parameters are composed of the proportionality constant,

integral constant, derivative constant, derivative order and integral order, and its design is more

complex than that of conventional integer-order proportional–integral–derivative (PID) controller. Here

the controller synthesis is based on user-specified peak overshoot and rise time and has been

formulated as a single objective optimization problem. In order to digitally realize the fractional-order

closed-loop transfer function of the designed plant, Tustin operator-based continuous fraction

expansion (CFE) scheme was used in this work. Several simulation examples as well as comparisons

of DE with two other state-of-the-art optimization techniques (Particle Swarm Optimization and binary

Genetic Algorithm) over the same problems demonstrate the superiority of the proposed approach

especially for actuating fractional-order plants. The proposed technique may serve as an efficient

alternative for the design of next-generation fractional-order controllers.

& 2008 Elsevier Ltd. All rights reserved.

1. Introduction

Fractional-order dynamic systems and controllers, which are
based on fractional-order calculus (Oldham and Spanier, 1974;
Lubich, 1986; Miller and Ross, 1993), have been gaining attention
in several research communities since the last few years
(Oustaloup, 1981; Chengbin and Hori, 2004). In Podlubny
(1999b), it was advocated that fractional-order calculus would
play a major role in a smart mechatronic system. Podlubny
proposed the concept of the fractional-order PIlDm controllers and
demonstrated the effectiveness of such controllers for actuating
the responses of fractional-order systems in 1999. A few recent
works in this direction as well as schemes for digital and
hardware realizations of such systems can be traced in Chen
et al. (2004), Nakagawa and Sorimachi (1992) and Chen et al.
(2005). Vinagre et al. (2000) proposed a frequency domain
approach based on expected crossover frequency and phase
margin for the same controller design. Petras came up with a

method based on the pole distribution of the characteristic
equation in the complex plane (Petras, 1999). Dorcak et al.
(2001) proposed a state-space design approach based on feedback
pole placement. The fractional controller can also be synthesized
by cascading a proper fractional unit to an integer-order controller
(Chengbin and Hori, 2004).

Proportional–integral–derivative (PID) controllers have been
used for several decades in industries for process control
applications. The reason for their wide popularity lies in the
simplicity of design and good performance including low
percentage overshoot and small settling time for slow process
plants (Astrom and Hagglund, 1995). In fractional-order propor-
tional–integral–derivative (FOPID) controller, I and D operations
are usually of fractional order; therefore, besides setting the
proportional, derivative and integral constants Kp, Td, Ti we have
two more parameters: the order of fractional integration l and
that of fractional derivative m. Finding an optimal set of values for
Kp, Ti, Td, l and m to meet the user specifications for a given process
plant calls for real parameter optimization in five-dimensional
hyperspace.

Differential evolution (DE) (Price et al., 2005; Storn and Price,
1997) has recently become quite popular as a simple and efficient
scheme for global optimization over continuous spaces. It has
reportedly outperformed many types of evolutionary algorithms

ARTICLE IN PRESS

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/engappai

Engineering Applications of Artificial Intelligence

0952-1976/$ - see front matter & 2008 Elsevier Ltd. All rights reserved.

doi:10.1016/j.engappai.2008.06.003

� Corresponding author. Tel.: +9133 2528 2717.

E-mail addresses: arijitbiswas87@gmail.com (A. Biswas),

swagatamdas19@yahoo.co.in (S. Das), ajith.abraham@ieee.org (A. Abraham),

sambartadg@gmail.com (S. Dasgupta).

Engineering Applications of Artificial Intelligence 22 (2009) 343–350

www.sciencedirect.com/science/journal/eaai
www.elsevier.com/locate/engappai
dx.doi.org/10.1016/j.engappai.2008.06.003
mailto:arijitbiswas87@gmail.com
mailto:swagatamdas19@yahoo.co.in
mailto:ajith.abraham@ieee.org
mailto:sambartadg@gmail.com


and search heuristics like PSO when tested over both benchmarks
and real-world problems (Vesterstrøm and Thomson, 2004). In
this work, a state-of-the-art version of DE has been used for
finding the optimal values of Kp, Ti, Td, l and m. The design method
focuses on optimum placing of the dominant closed-loop poles
and incorporate the constraints thus obtained using DE algorithm.
The optimization-based design process has been tested for
actuating the response of four process plants of which two are
of integer order and two are of fractional order. The performance
of the DE-based PIlDm controller has been compared with two
other fractional-order controllers designed with the state-of-the-
art versions of two recent swarm intelligence-based techniques
well known as the Hierarchical Particle Swarm Optimizer with
Time Varying Acceleration Coefficients (HPSO-TVAC) (Ratnaweera
and Halgamuge, 2004) and the genetic algorithm (Holland, 1975;
Cao et al., 2005). Such comparison reflects the superiority of the
proposed method in terms of quality of the final solution,
convergence speed and robustness.

The rest of the paper is organized as follows. Section 2
describes the rudiments of fractional calculus and fractional-order
control systems. Section 3 provides a brief overview of the DE
family of algorithms and describes a recent state-of-the-art
version of DE called DE/rand/either–or, which was used, in this
specific task. Section 4 demonstrates how the DE can be applied to
the PIlDm controller design problem when formulated as an
optimization task. Simulation strategies and experimental results
have been presented and discussed in Section 5 and finally the
paper is concluded with a discussion on future research issues in
Section 6.

2. Fractional-order systems: a brief overview

Fractional calculus is a branch of mathematical analysis that
studies the possibility of taking real number power of the
differential operator and integration operator. From a purely
mathematical point of view, there are several ways to define
fractional-order derivatives and integrals. The generalized differ-
integrator operator may be put forward as

aDq
t f ðtÞ ¼

dqf ðtÞ

½dðt � aÞ�q
(1)

where q represents the real order of the differintegral (an n

is used in some literature to denote an integer order), t is the
parameter for which the differintegral is taken and a is
the lower limit. Unless otherwise stated, the lower limit will
be 0 and left out of the notation. Caputo used a popular definition
used to compute differintegral in 1960s. The definition for
Caputo’s fractional derivative of order l with respect to the
variable t and with the starting point t ¼ 0 goes as follows
(Caputo, 1967, 1969):

0Dl
t yðtÞ ¼

1

Gð1� dÞ

Z t

0

yðmþ1ÞðtÞdt
ðt � tÞd

ðg ¼ mþ d; m 2 Z; 0odp1Þ

(2)

where G(Z) is Euler’s gamma function. If go0, then we have a
fractional integral of order �g given as

0I�gt yðtÞ ¼ 0Dg
t yðtÞ ¼

1

Gð�gÞ

Z t

0

yðtÞdt
ðt � tÞ1þg

ðgo0Þ (3)

One distinct advantage of using Caputo’s definition is that it
only allows for consideration of easily interpretable initial
conditions but it is also bounded, which means the derivative of
a constant is equal to zero. In time domain, a fractional-order

system is governed by an n-term inhomogeneous fractional-order
differential equation (FDE):

anDbn yðtÞ þ an�1Dbn�1 yðtÞ þ � � � þ a1Db1 yðtÞ þ a0Db0 yðtÞ ¼ uðtÞ (4)

where Dl
� 0Dl

t is the Caputo’s fractional derivative of order l.
Converting to frequency domain, the fractional-order transfer
function of such a system may be obtained through the Laplace
transform function as follows:

GnðsÞ ¼
1

ansbn þ an�1sbn�1 þ � � � þ a1sb1 þ a0sb0
(5)

where bk (k ¼ 0, 1, y, n) is an arbitrary real number,
bn4bn�14?4b14b040 and ak (k ¼ 0, 1, y, n) is an arbitrary
constant. Finally, we would like to mention here that the Laplace
transform of the fractional derivative might be given asZ 1

0
e�stDgyðtÞdt ¼ sgYðsÞ �

Xm

k¼0

sg�k�1yðkÞðyÞ (6)

For go0 (i.e., for the case of a fractional integral) the sum in the
right-hand side must be omitted.

3. The DE algorithm and its modification

Like any other evolutionary algorithm, DE starts with a
population of NP D-dimensional parameter vectors representing
the candidate solutions. We shall denote subsequent generations
in DE by G ¼ 0, 1, y, Gmax. Since the parameter vectors are likely
to be changed over different generations, we may adopt the
following notation for representing the ith vector of the popula-
tion at the current generation as

~Xi;G ¼ ½x1;i;G; x2;i;G; x3;i;G; . . . ; xD;i;G� (7)

The initial population (at G ¼ 0) should better cover the entire
search space as much as possible by uniformly randomizing
individuals within the search space constrained by the prescribed
minimum and maximum bounds: ~Xmin ¼ fx1;min; x2;min; . . . ; xD;ming

and ~Xmax ¼ fx1;max; x2;max; . . . ; xD;maxg. Hence we may initialize the
jth component of the ith vector as

xj;i;0 ¼ xj;min þ randjð0;1Þðxj;max � xj;minÞ (8)

where randj(0,1) is the jth instantiation of a uniformly distributed
random number lying between 0 and 1. Following steps are taken
next: mutation, crossover and selection, which are explained
below.

3.1. Mutation

After initialization, DE creates a donor vector ~Vi;G correspond-
ing to each population member or target vector ~Xi;G in the current
generation through mutation. It is the method of creating this
donor vector, which differentiates between the various DE
schemes. For example, five most frequently referred mutation
strategies implemented in the public-domain DE codes available
online at http://www.icsi.berkeley.edu/�storn/code.html are
listed below:

‘‘DE=rand=1’’ : ~Vi;G ¼
~Xri

1
;G þ Fð~Xri

2
;G �

~Xri
3
;GÞ (9)

‘‘DE=best=1’’ : ~Vi;G ¼
~Xbest;G þ Fð~Xri

1
;G �

~Xri
2
;GÞ (10)

‘‘DE=target-to-best=1’’ : ~Vi;G ¼
~Xi;G

þ Fð~Xbest;G �
~Xi;GÞ

þ Fð~Xri
1
;G �

~Xri
2
;GÞ (11)

ARTICLE IN PRESS

A. Biswas et al. / Engineering Applications of Artificial Intelligence 22 (2009) 343–350344

http://www.icsi.berkeley.edu/~storn/code.html
http://www.icsi.berkeley.edu/~storn/code.html


Download English Version:

https://daneshyari.com/en/article/381190

Download Persian Version:

https://daneshyari.com/article/381190

Daneshyari.com

https://daneshyari.com/en/article/381190
https://daneshyari.com/article/381190
https://daneshyari.com

