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Abstract

In this paper, an adaptive growing-and-pruning neural network control (AGPNNC) system is developed for a linear piezoelectric
ceramic motor. The AGPNNC system is composed of a neural controller and a robust controller. The neural controller uses a self-
constructing neural network (SCNN) to mimic an ideal computation controller, and the robust controller is designed to achieve L,
tracking performance with desired attenuation level. If the approximation performance of the SCNN is inadequate, the SCNN can create
new hidden neurons to increase learning ability. If the hidden neuron of the SCNN is insignificant, it should be removed to reduce
computation loading; otherwise, if the hidden neuron of the SCNN is significant, it should be retained. Moreover, the adaptive laws of
controller parameters are derived in the sense of Lyapunov function and Barbalat’s lemma; so the system stability can be guaranteed.
Finally, experimental results show that a perfect tracking response can be achieved using the self-constructing network mechanism and

the on-line parameter-learning algorithm.
© 2008 Elsevier Ltd. All rights reserved.
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1. Introduction

Modern mechanical systems, such as machine tools and
automatic inspection machines, often require high-speed
high-accuracy linear motions. These linear motions are
usually realized using the rotary motors with a mechanical
transmission, such as reduction gears and lead screw. These
mechanical transmissions not only significantly reduce the
linear motion speed and dynamic response, but also
introduce backlash and large friction. To tackle this
problem, a linear piezoelectric ceramic motor (LPCM) is
introduced to apply the linear motion without using any
mechanical transmission (Sashida and Kenjo, 1993). The
LPCM has many advantages, such as high precision, fast
control dynamics, large driving force, smaller dimension,
high holding force, silence and more minimum step size
than the class electromagnetic motors, so it can be used in
many different applications (Sashida and Kenjo, 1993; Lin
et al., 2001b). However, the driving principle of the LPCM
is based on the ultrasonic vibration force of piezoelectric
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ceramic elements and mechanical frictional force. There-
fore, its mathematical model is complex, and the motor
parameters are time-varying because of increasing tem-
perature and changes in motor drive operating conditions
(Lin et al., 2001b). From the controller design viewpoint,
the conventional control technologies are always based on
a good understanding of the control system dynamics, so
the conventional control scheme for LPCM cannot achieve
satisfy control-tracking performance.

If the exact model of the controlled system is well
known, there exists an ideal computation controller to
achieve favorable control performance by possibly cancel-
ing all the system uncertainties (Slotine and Li, 1991). Since
the LPCM system dynamics cannot be exactly known, the
ideal computation controller for LPCM cannot be
implemented. Recently, several neural-network-based in-
telligent control approaches have been addressed for the
LPCM control without knowledge of the process dynamics
(Lin et al., 2001b; Peng and Lin, 2007; Wai et al., 2002.
2004). The key success element is the approximation theory
of neural network, where the parameterized neural network
can estimate the unknown system dynamics or the ideal
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computation controller after learning. Some of these
learning algorithms are based on the backpropagation
algorithm (Lin et al., 2001b). However, these approaches
are difficult to guarantee the stability and robustness of
closed-loop system. Some of the learning algorithms are
based on the Lyapunov stability theorem. The tuning laws
of the neural network have been design to guarantee the
system stability in the Lyapunov sense (Peng and Lin,
2007; Wai et al., 2002, 2004).

Though the tracking performances of LPCM are
acceptable in Lin et al. (2001b), Peng and Lin (2007), and
Wai et al. (2002, 2004), the learning algorithms only
consider the parameter learning of the neural network, but
do not consider the structure learning of the neural
network. If the number of hidden neurons is too large,
the computation loading is heavy so that they are
unsuitable for practical applications. If the number of
hidden neurons is too small, the learning performance may
not be good enough to achieve the desired control
performance. It is a trade off between the approximation
performance of neural network and the number of hidden
neurons. To tackle this problem, several self-constructing
neural networks (SCNN), consisting of structure and
parameter-learning phases, have been proposed (Huang
et al., 2005; Juang and Lin, 1998; Lee and Ouyang, 2003;
Lin et al., 2005). These learning algorithms not only decide
the structure of neural network but also adjust the
parameters of neural network.

Recently, several SCNN-based adaptive control schemes
have been applied to control the unknown nonlinear
systems (Gao and Er, 2003; Lin et al., 2001a; Lin and Lin,
2004; Park et al., 2005; Hsu, 2007). Gao and Er (2003)
proposed an error reduction ratio with QR decomposition
to prune the hidden neurons; however, the design
procedure is too complex. In Lin et al. (2001a), Lin and
Lin (2004) and Hsu (2007), the structure-learning algo-
rithm is based on the partitioning the input space and the
parameter learning is based on the supervised gradient
decent method; however, as the number of input variables
is too large, heavy computation loading of similarity
checking will occur. Park et al. (2005) proposed a neural
network with online variation of the number of hidden
neurons. However, the developed condition only considers
the growing algorithm of the neural network. The
proposed approach cannot avoid the structure of neural
network growing in an unbound manner.

The motivation of this paper is to design an adaptive
growing-and-pruning neural network control (AGPNNC)
system for the LPCM system without any knowledge of the
LPCM system dynamics. The developed AGPNNC system
is composed of a neural controller and a robust controller.
The neural controller uses an SCNN to estimate an ideal
computation controller, and the robust controller is
designed to achieve L, tracking performance with attenua-
tion of disturbances including approximation errors and
external uncertainties. The learning phase of AGPNNC
includes the structure learning and the parameter-learning

phases. In the structure-learning phase, the SCNN not only
can create the new hidden neurons on-line if the
approximation performance is inappropriate, but can also
prune the insignificant hidden neurons on-line if the hidden
neuron is inappropriate. In the parameter-learning phase,
the controller parameters are on-line tuned based on the
Lyapunov function and Barbalat’s lemma, so the stability
of the closed-loop system can be guaranteed. Finally, the
computer control experimental system for the LPCM
system is setup. The experimental results show the
AGPNNC system can achieve the perfect tracking response
after the SCNN is sufficiently trained.

This study is organized as follows. Section 2 briefly
describes an LPCM system. In Section 3.1, a novel
SCNN with online variation of the number of hidden
neurons according to the proposed condition is described.
In Section 3.2, an AGPNNC system is designed for an
LPCM system to track a reference command. The design
procedures and qualitative analysis are described in
detail. Some experimental results are provided to show
the effectiveness of the proposed AGPNNC method in
Section 4. Conclusions are drawn in Section 5.

2. Linear piezoelectric ceramic motor

The structure of the LPCM is a large face of a relatively
thin rectangular piezoelectric ceramic device. The driving
principles of the LPCM are based on the ultrasonic
vibration force of piezoelectric ceramic element and
mechanical frictional force. Fig. 1(a) shows the principal
structure of the LPCM (Sashida and Kenjo, 1993; Peng
and Lin, 2007). Four electrodes (A, A’, B and B’) are
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Fig. 1. (a) Structure of LPCM and (b) friction drive system.
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