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a b s t r a c t

This paper introduces a binary particle swarm optimization-based method to accomplish optimal

location of biomass-fuelled systems for distributed power generation. The approach also provides the

supply area for the biomass plant and takes technical constraints into account. This issue can be

formulated as a nonlinear optimization problem. In rural or radial distribution networks the main

technical constraint is the impact on the voltage profile. Biomass is one of the most promising

renewable energy sources in Europe, but more research is required to prove that power generation from

biomass is both technically and economically viable. Forest residues are here considered as biomass

source, and the fitness function to be optimized is the profitability index. A fair comparison between the

proposed algorithm and genetic algorithms (GAs) is performed. For such goal, convergence curves of the

average profitability index versus number of iterations are computed. The proposed algorithm reaches a

better solution than GAs when considering similar computational cost (similar number of evaluations).

& 2008 Elsevier Ltd. All rights reserved.

1. Introduction

Renewable electricity generation has emerged as one of the
favored options for dealing with fossil fuel depletion, green house
gas emissions and subsequent adverse effects like global warm-
ing. As an outcome of the Kyoto protocol, one of the European
Union’s objectives is to increase the contribution of renewable
energy sources up to 12% of the total energy supplied by 2010.

Biomass is one of the most promising renewable energy
sources in Europe, but more research is required to prove that
power generation from biomass is both technically and economic-
ally viable. In such sense, some interesting results can be found in
Kumar et al. (2003) and Jurado and Cano (2006). The main
advantage of biomass-based power generation is that the cycle of
growth and combustion of biomass has a net zero level of CO2

production. Also, the use of biomass generates employment and
rural economic progress where it takes place, contributing to
sustainable development.

There are many forms of biomass, the forest residues
constitute one of the most important biomass sources. In this
paper, we are concerned with forest residues as biomass source.
They are not habitually convertible in by-products. However, they
can be used as organic fuel, providing the following additional

advantages: reducing forest pests, decreasing the forest fire risk,
reducing environmental impacts, etc. The principle factors to
assess the possibilities of forest residues to generate electrical
energy are: forest vegetation density, type of trees, accessibility
and orography of the terrain, age of the forest vegetation, size of
tops, needles, branches, etc.

There are several options to produce electricity from biomass:
combustion, gasification and pyrolysis, gasification being the most
efficient one. Gasification of biomass is a thermal treatment,
which ensues in a high production of gaseous products and small
amounts of char and ash. Steam reforming of hydrocarbons,
partial oxidation of heavy oil residues, selected steam reforming of
aromatic compounds, and gasification of coals and solid wastes to
yield a mixture of H2 and CO, accompanied by water–gas shift
conversion to produce H2 and CO2, are well-proved processes
(Jurado et al., 2001).

Gas derived from biomass gasification is a renewable fuel,
which can be used for electricity production. The gasifier heats
with limited oxygen supply the forest residues, the final result
being a very clean-burning gas fuel suitable for direct use in gas
turbines or gas engine. In this article, the chosen biomass-fuelled
system is a fuel cell-microturbine hybrid power cycle.

A fuel cell is an electrochemical device that converts chemical
energy directly into electrical energy. It is based on the inverse
reaction of the electrolysis. Different types of fuel cells exist with
different performances and components. The classification is
based on the electrolyte, resulting in the following types of fuel
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cells: proton exchange membrane fuel cell (PEMFC), phosphoric
acid fuel cell (PAFC), molten carbonate fuel cell (MCFC), solid
oxide fuel cell (SOFC) (Ellis et al., 2001). Among them, the most
promising one is the SOFC. It is composed of an electrolyte
metallic oxide, no porous and good conductive, it can be
manufactured in different geometric setups (planar, tubular,
monolithic, etc.) and it is characterized fundamentally by their
high operating temperature (between 800 and 1000 1C). These
high temperatures simplify system configuration by permitting
internal reforming and accepting their components determined
gases that are very polluting for another type of fuel cells. The
high operating temperatures facilitate the development of
cogeneration systems as well as hybrid power systems formed
by the own fuel cell and a gas turbine. The thermal energy
generated by electrochemical reactions in the fuel cell is utilized
to produce more output power by a gas turbine. As result, higher
overall efficiency is expected (approximately 60%) in comparison
to that obtained from individual systems (Ellis et al., 2001;
Williams et al., 2004; Kuchonthara et al., 2003).

Microturbines (MT) generate between 25 and 200 kW of
electricity. Their relatively low cost and small size allow them to
be located near where they are needed. They can operate at very
low emission levels and reduce the efficiency losses and
environmental impact of large transmission and distribution
systems. In this paper, SOFC is associated with a biogas
microturbine (SOFC-MT system) to produce electric power (Jurado
and Saenz, 2003; Jurado, 2003).

A biomass-based power system presents the problem of
determining the optimal placement and the supply area for the
biomass plant in order to provide a given electric power. It is
probably that distributed generation (DG) will consider some
distributed source connected to remote areas, where electric
networks are weak and the demand is small. Given the more
resistive feature of the distribution networks, it is awaited that
generators will have a significant impact, positive or negative in
unlike circumstances, on the voltage profile. As a result, a
planning technique for DG must study the effect that generation
will have on the network voltage. In rural or radial distribution
networks the main constraint for the power flow is the impact on
the voltage profile (Jurado and Cano, 2006). As a result, the DG
planning technique must include an appropriate power flow
technique. When a realistic problem formulation with all above-
mentioned considerations is to be solved, most analytical,
numerical programming or heuristic methods are unable to work
well. In recent years, artificial intelligence (AI)-based methods,
such as genetic algorithms (GAs), have been applied to similar
problems with promising results (Boone and Chiang, 1993).
Meanwhile, some new AI-based methods have been introduced
and developed. Although these AI-based methods do not always
guarantee the globally optimal solution, they provide suboptimal
(near-globally optimal) solutions in short CPU times. This paper
employs a modern AI-based method, particle swarm optimization
(PSO) (Kennedy and Eberhart, 1995; Eberhart and Kennedy, 1995;
Kennedy, 1997), to solve the problem of determining the optimal
placement and the supply area for a biomass-fuelled system. In
this work, the fitness function for the PSO algorithm is the
profitability index (Eq. (21)).

PSO is a nature-inspired evolutionary stochastic algorithm
developed by Kennedy and Eberhart (1995). This technique,
motivated by social behavior of organisms such as bird
flocking and fish schooling, has been shown to be effective in
optimizing multidimensional problems. PSO, as an optimization
tool, provides a population-based search procedure, in which
individuals, called particles, change their positions (states)
with the time. In a PSO system, particles fly around in a
multidimensional search space. During flight, each particle

adjusts its position according to its own experience,
and the experience of neighboring particles, making use of the
best position encountered by itself and its neighbors. The main
advantages of PSO are: (1) it is very easy to be implemented and
(2) there are few parameters to adjust.

2. Particle swarm optimization

2.1. Classical approach

The classical PSO algorithm is initialized with a swarm of
particles randomly placed on the search space. At the tth iteration,
position of the ith particle is updated by adding to its previous
position the new velocity vector, according to the following
equation:

xt
i;j ¼ xt�1

i;j þ vt
i;j; i ¼ 1; . . . ; P; j ¼ 1; . . . ;N (1)

where xt
i ¼ ½x

t
i;1; . . . ; x

t
i;N� denotes the position vector of the ith

particle at the tth iteration, and vt
i ¼ ½v

t
i;1; . . . ; v

t
i;N� represents the

velocity vector of the ith particle at the tth iteration, N being the
number of variables of the function to be optimized and P the
number of particles in the swarm.

The velocity vector vt
i is updated according to the following

equation:

vt
i;j ¼ o � vt�1

i;j þ c1 � rand1i
� ðpbestt�1

i;j � xt�1
i;j Þ

þ c2 � rand2i
� ðgbestt�1

� xt�1
i;j Þ (2)

where pbestt�1
i ¼ ½pbestt�1

i;1 ; . . . ;pbestt�1
i;N � is the best solution

achieved for the ith particle at the ðt � 1Þth iteration, and
gbestt�1

¼ ½gbestt�1
1 ; . . . ; gbestt�1

N � is the best position found for
all particles in the swarm at the ðt � 1Þth iteration. c1 and c2 are
positive real numbers, called learning factors or acceleration
constants, that are used to weight the particle individual knowl-
edge and the swarm social knowledge, respectively. rand1i

and
rand2i

are real random numbers uniformly distributed between 0
and 1, that make stochastic changes in the ith particle trajectory.
Finally, o is the inertia weight factor, which represents the
weighting of a particle’s previous velocity; a suitable selection of
inertia weight in (2) provides a balance between global and local
explorations, thus requiring less iterations on average to achieve a
suboptimal solution.

From Eq. (2), we can find that the current flying velocity of a
particle comprises three terms. The first term is related to the
particle’s previous velocity, revealing that a PSO system has
memory. The second and third terms represent the cognitive-
model part and the social-model part, respectively.

2.2. Binary PSO

The classical version of the PSO algorithm operates in a
continuous search space. In order to solve optimization problems
in discrete search spaces, several binary discrete PSO algorithms
have been proposed. In this section some of these algorithms are
briefly reviewed.

In a binary discrete space the position of a particle is
represented by a N-length bit string and the movement of the
particle consists of flipping some of these bits.

Kennedy and Eberhart (1997) propose the first binary
version of PSO. This algorithm updates the velocity vector vt

i

according to Eq. (2), but variable vt
i;j is interpreted as the

probability of the bit at position j of particle i at the tth
iteration to become ‘1’. Since the computed velocity can be
greater than 1.0 or even less than 0.0, a sigmoid function
(Eq. (3)) is applied to variable vt

i;j in order to transform velocity
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