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a b s t r a c t

Data-driven techniques such as Auto-Regressive Moving Average (ARMA), K-Nearest-Neighbors (KNN),

and Artificial Neural Networks (ANN), are widely applied to hydrologic time series prediction. This

paper investigates different data-driven models to determine the optimal approach of predicting

monthly streamflow time series. Four sets of data from different locations of People’s Republic of China

(Xiangjiaba, Cuntan, Manwan, and Danjiangkou) are applied for the investigation process. Correlation

integral and False Nearest Neighbors (FNN) are first employed for Phase Space Reconstruction (PSR).

Four models, ARMA, ANN, KNN, and Phase Space Reconstruction-based Artificial Neural Networks

(ANN-PSR) are then compared by one-month-ahead forecast using Cuntan and Danjiangkou data. The

KNN model performs the best among the four models, but only exhibits weak superiority to ARMA.

Further analysis demonstrates that a low correlation between model inputs and outputs could be the

main reason to restrict the power of ANN. A Moving Average Artificial Neural Networks (MA-ANN),

using the moving average of streamflow series as inputs, is also proposed in this study. The results show

that the MA-ANN has a significant improvement on the forecast accuracy compared with the original

four models. This is mainly due to the improvement of correlation between inputs and outputs

depending on the moving average operation. The optimal memory lengths of the moving average were

three and six for Cuntan and Danjiangkou, respectively, when the optimal model inputs are recognized

as the previous twelve months.

& 2010 Elsevier Ltd. All rights reserved.

1. Introduction

Many data-driven models, including linear, nonparametric or
nonlinear approaches, are developed for hydrologic discharge time
series prediction in the past decades (Marques et al., 2006). Generally,
there are two basic assumptions underlay different model techniques.
The first assumption suggests that a time series is originated from a
stochastic process with an infinite number of degrees of freedom.
Under this assumption, linear models such as AutoRegressive (AR),
AutoRegressive Moving Average (ARMA), AutoRegressive Integrated
Moving Average (ARIMA), and Seasonal ARIMA (SARIMA) had made a
great success in river flow prediction (Carlson et al., 1970; Salas et al.,

1985; Haltiner and Salas, 1988; Yu and Tseng, 1996; Kothyari and
Singh, 1999; Huang et al., 2004; Marı́a et al., 2004).

The second assumption is that a random-looking hydrologic time
series is derived from a deterministic dynamic system such as chaos.
In the past two decades, chaos-based streamflow prediction
techniques have been increasingly obtaining interests of the
hydrology community (Jayawardena and Lai, 1994; Jayawardena
and Gurung, 2000; Elshorbagy et al., 2002; Wang et al., 2006b)
although some doubts have been raised in terms of the existence of
chaos in hydrologic data (Ghilardi and Rosso, 1990; Koutsoyiannis
and Pachakis, 1996; Pasternack, 1999; Schertzer et al., 2002; Wang
et al., 2006a). Generally, the prediction techniques for a dynamic
system can be roughly divided into two approaches: local and global.
Local approach uses only nearby states to make predictions whereas
global approach involves all the states. K-Nearest-Neighbors (KNN)
algorithm, Artificial Neural Networks (ANN) and Support Vectors
Machine (SVM) are some typical forecast methods for dynamic
systems (Sivapragasam et al., 2001; Laio et al., 2003; Wang et al.,
2006b). Phase-Space-Reconstruction (PSR) is a precondition before
performing any predictions of the dynamic system. Typical methods
involved in PSR are correlation integral, singular-value decomposi-
tion of the sample covariance matrix, False Nearest Neighbors (FNN),
and true vector fields (Grassberger and Procaccia, 1983; Abarbanel
et al., 1993).

Comparative studies on the above prediction techniques have
been further carried out by some researchers. Sivakumar et al. (2002)
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found that the performance of the KNN approach was consistently
better than ANN in short-term river flow prediction. Laio et al. (2003)
carried out a comparison of KNN and ANN for flood predictions and
found that KNN performed slightly better at short forecast time while
the situation was reversed for longer time. Similarly, Yu et al. (2004)
proposed that KNN performed worse than ARIMA on the basis of
daily streamflow prediction. The conclusions in literature are very
inconsistent. It is difficult to justify which modeling technique is
more suitable for a streamflow forecast.

The above two assumptions are in the extremes of a hydrologic
streamflow series. Salas et al. (1985) suggested that a streamflow
process should be treated as an integration of stochastic (or
random) and deterministic components. Describing it as either a
totally linear stochastic process or fully nonlinear deterministic
chaos is not a practical approach (Elshorbagy et al., 2002).
Therefore, the model based on either of two assumptions may
not be the most suitable. An investigation on an optimal prediction
model is worthy to further study with different real monthly
streamflow data (Xiangjiaba, Cuntan, Manwan, and Danjiangkou).

The scope of this study is to compare four forecast models,
ARMA, ANN, KNN, and ANN-PSR and develop an optimal model for
monthly streamflow prediction. This paper is organized in the
following manner. Section 2 presents the four sets of streamflow
data used in this study. Section 3 first describes the principles of
PSR and then identifies its parameters using the correlation integral
approach and the FNN approach. The implementation of the
forecast models, including data preparation and selection of
parameters, is discussed in Section 4. Forecast results are described
in Section 5 and conclusions of the study are presented in Section 6.

2. Streamflow data

Monthly streamflow series of three watersheds and one river,
i.e. Xiangjiaba, Manwan, Danjiangkou, and Yangtze River, were
analyzed in this study.

The largest watershed, Xiangjiaba, is at the upstream of
Yangtze river with average yearly discharge of 4538 m3/s. Monthly
streamflow series were taken from the hydrological station near

the Xiangjiaba Dam site located in Sichuan Province. The basin area
contributed to the streamflow series is around 45.88�104 km2.
The period of the data was from January 1940 to December 1997.

The medium watershed, Manwan, is located in the Lancang
River which originates from the Qinghai–Tibet Plateau. Monthly
streamflow series were taken from the hydrological station near
the Manwan Dam site located in Sichuan Province. The catchment
area controlled by the station is 11.45�104 km2, and the average
yearly discharge is 1230 m3/s based on a statistic of 30-year data
(January 1974–December 2003).

The smallest watershed, Danjiangkou, lies at the upstream of
Han river with average yearly discharge of 1203 m3/s. Monthly
streamflow data came from the hydrology station at the
Danjiangkou Dam site which is located in Hubei Province. The
catchment area at the dam site is around 9.5�104 km2. The data
range was from January 1930 to December 1981.

The last streamflow series is Yangtze River, the largest river in
China. The selected monthly streamflow data were from the
hydrology station of Cuntan located in the middle stream of the
river. The stream flow series spanned from January 1893 to
December 2007.

Four monthly streamflow series are shown in Fig. 1. Monthly
streamflow data in Xiangjiaba, Manwan, and Cuntan are chara-
cterized by a smooth process whereas monthly streamflow data
in Danjiangkou exhibits complex oscillations. The linear fits
(dotted lines in Fig. 1) verify the consistency of the streamflow
series. All series exhibit good consistency because the linear fits
are close to horizontal. Since there were no large-scale hydraulic
works such as dams built during the data collection period, the
streamflow process is fairly pristine in each case.

3. Reconstruction of dynamics

3.1. Phase space reconstruction

To describe the temporal evolution of a dynamic system
in a multi-dimensional phase space with a scale time series,
it is essential to employ some techniques to unfold the
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Fig. 1. Monthly discharge series of (1) Xiangjiaba, (2) Cuntan, (3) Manwan, and (4) Danjiangkou.
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