
Feasible distributed CSP models for scheduling problems

Miguel A. Salido �, Adriana Giret

Departamento de Sistemas Informáticos y Computación, Universidad Politécnica de Valencia, Camino de Vera s/n, 46022 - Valencia, Spain

a r t i c l e i n f o

Article history:

Received 29 January 2008

Accepted 1 March 2008
Available online 22 April 2008

Keywords:

Distributed CSP

Constraint satisfaction

Holonic system

Multi-agent system

Scheduling

a b s t r a c t

A distributed constraint satisfaction problem (DisCSP) is a CSP in which variables and constraints are

distributed among multiple automated agents. Many researchers have developed techniques for solving

DisCSPs. They assume for simplicity that each agent has exactly one variable. For real planning and

scheduling problems, these techniques require a large number of messages passing among agents, so

these problems are very difficult to solve. In this paper, we present a general distributed model for

solving real-life scheduling problems. This distributed model is based on the idea of holonic systems.

Furthermore, we propose some guidelines for distributing large-scale problems. Finally, we present two

case studies in which two scheduling problems are distributed by using our model.

& 2008 Elsevier Ltd. All rights reserved.

1. Introduction

In recent years, we have seen increasing interest in distributed
constraint satisfaction problem (DisCSP) formulations to model
combinatorial problems (see Faltings and Yokoo, 2005). There is a
rich set of real-world distributed applications, such as network
systems, planning, scheduling, resource allocation, etc., for which
the DisCSP paradigm is particularly useful. In such distributed
applications, privacy issues, knowledge transfer costs, robustness
against failure, etc., preclude the adoption of a centralized
approach (Faltings and Yokoo, 2005).

Briefly, a constraint satisfaction problem (CSP) consists of the
following:

� a set of variables X ¼ fx1; x2; . . . ; xng;
� each variable xi 2 X has a set Di of possible values (its domain);
� a finite collection of constraints C ¼ fc1; c2; . . . ; cpg restricts the

values that the variables can simultaneously take.

A solution to a CSP is an assignment of values to all the variables
so that all constraints are satisfied. A problem with a solution is
termed satisfiable or consistent.

A typical example of a CSP is the graph coloring problem. The
objective is to color each region so that adjacent regions have
different colors (Fig. 1). A problem of this kind is called a CSP since
the objective is to find a configuration that satisfies the given
conditions (constraints). Even though the definition of a CSP is

very simple, a surprisingly wide variety of Artificial Intelligence
problems can be formalized as CSPs. Therefore, the research on
CSP has a long and distinguished history in Artificial Intelligence
(Mackworth, 1992).

For example, in the graph coloring problem presented in Fig. 1,
it is obvious that region x must be colored with a different color
than region y, and so on. Therefore, we can formalize this problem
as a CSP, in which there are four variables x; y; z;w each of which
corresponds to a regions. The domain of each variable is the set of
available colors: red, blue, green. The constraints that force that
the adjacent regions must be colored with different colors are
xay, xaz, xaw, yaw.

CSP (graph coloring problem):

Variables: fx; y; z;wg;
Domain of each variable: fred;blue; greeng;
Constraints: xay, xaz, xaw, yaw.

A solution is a valid combination of values for these variables:
x ¼ red, y ¼ blue, z ¼ blue and w ¼ green.

A DisCSP is a CSP in which the variables and constraints are
distributed among automated agents (Yokoo and Hirayama,
2000). Finding a value assignment to variables that satisfies
inter-agent constraints can be viewed as achieving coherence or
consistency among agents.

The above example of the graph coloring problem can be
modelled as a DisCSP, where each variable in the resulting DisCSP
is owned by one particular agent who ensures that the variable
has a value assigned to it. Thus, agent x owns variable x and so on
(see Fig. 2). The actual search for solving the DisCSP can be carried
out by a central agent, or in a distributed manner through
message exchange among the agents. This approach, which is

ARTICLE IN PRESS

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/engappai

Engineering Applications of Artificial Intelligence

0952-1976/$ - see front matter & 2008 Elsevier Ltd. All rights reserved.

doi:10.1016/j.engappai.2008.03.006

� Corresponding author. Tel.: +34 963877007; fax: +34 963877359.

E-mail addresses: msalido@dsic.upv.es (M.A. Salido), agiret@dsic.upv.es

(A. Giret).

Engineering Applications of Artificial Intelligence 21 (2008) 723– 732

www.sciencedirect.com/science/journal/eaai
www.elsevier.com/locate/engappai
dx.doi.org/10.1016/j.engappai.2008.03.006
mailto:msalido@dsic.upv.es
mailto:agiret@dsic.upv.es
mailto:agiret@dsic.upv.es


illustrated in Fig. 2, was pioneered by Yokoo et al. (1992, 1998b) in
their asynchronous backtracking algorithm. In asynchronous
backtracking, the DisCSP is solved by asynchronous message
exchange. It assumes a priority ordering among agents (e.g., a
unique serial number assigned to each agent) and an agent is
responsible for enforcing all constraints between itself and all
variables owned by higher agents in this ordering. The problem is
solved through an exchange of messages that does not need to be
synchronized among agents.

The advantage of distributed search is that an agent only needs
to know about agents that own a variable that it has a constraint
with, but not about the entire problem. Thus, in the example of
Fig. 2, the agent that owns variable z only has to communicate
with the agents that owns x and w, but not with the agent that
owns y. In certain algorithms, it can happen that new connections
are created dynamically during search; thus, z might become
connected to y. The approach is most suitable when the overall
problem is large, but not very densely connected. However, when
the problem is densely connected or the number of variables is
very high, the cost of communication during the solving process is
likely to become very high, too.

The most cited papers related to DisCSP make the following
assumptions for simplicity in describing their algorithms:

(i) Each agent has exactly one variable.
(ii) All constraints are binary.

(iii) Each agent knows all constraint predicates that are relevant
to its variable.

Although the great majority of real problems are naturally
modelled as non-binary CSPs, the second assumption is compre-
hensible due to the fact that there exist some techniques that
translate any non-binary CSP into an equivalent binary one
(Bacchus and van Beek, 1998).

However, the first assumption is too restrictive, and the main
basic research focuses on small instances. Also, little work has
been done to solve real-life problems.

2. Main features in DisCSPs

In this section, we present the main features that make the use
of DisCSPs appropriate. It is well known that if all knowledge
about the problem could be gathered into one agent, this agent
could solve the problem alone using traditional centralized
constraint satisfaction algorithms. However, such a centralized
solution is often inadequate or even impossible. Faltings and
Yokoo (2005) present some reasons why distributed methods may
be desirable:

� The cost of creating a central authority: A CSP may be naturally
distributed among a set of agents. In such cases, a central
authority for solving the problem would require adding an
additional element that was not present in the architecture.
Examples of such systems are sensor networks or meeting
scheduling.
� The knowledge transfer costs: In many cases, constraints arise

from complex decision processes that are internal to an agent
and cannot be articulated to a central authority. Examples of
this range from simple meeting scheduling, where each
participant has complex preferences that are hard to articulate,
to coordination decisions in virtual enterprises that result from
complex internal planning. A centralized solver would require
such constraints to be completely articulated for all possible
situations. This would entail prohibitive costs.
� Privacy/security concerns: Agents involve constraints that may

represent strategic information that should not be revealed to
competitors, or even to a central authority. This situation often
arises in many enterprises. Privacy is easier to maintain in
distributed solvers.
� Robustness against failure: The failure of the centralized server

can be fatal. In a distributed method, a failure of one agent can
be less critical and other agents might be able to find a solution
without the failed agent. Such concerns arise, for example, in
sensor networks, but also in web-based applications where
participants may leave while a constraint solving process is
ongoing.

These reasons have motivated significant research activity in
distributed constraint satisfaction. Up to now, the field has
reached a certain maturity and has developed a range of different
techniques. Nevertheless, most of the works are focused on
developing new techniques which are evaluated using toy
problems and random benchmarks.

3. Open issues in DisCSPs

In spite of significant progress, there are many important open
issues in DisCSPs. The six main open issues for using DisCSPs are
the following:

� While distributed algorithms eliminate the need for a central
authority, the currently known algorithms pay a high price in
efficiency. In general, the message traffic even for a single
agent can be higher than what would be required to
communicate the entire problem to a leader agent that could
solve it centrally. More research is required to significantly
reduce the communication requirements, possibly with radi-
cally different algorithms that are better suited for distribution.
� Many DisCSP algorithms assume an agent has enough knowl-

edge to evaluate constraints that are related to its variables. If
this is not true, some constraints may still have to be
communicated or additional communication may be needed.

ARTICLE IN PRESS

Fig. 1. Example of a constraint satisfaction problem (graph coloring).

Fig. 2. Example of a distributed constraint satisfaction problem (graph coloring).

Variables are nodes and constraints are arcs.

M.A. Salido, A. Giret / Engineering Applications of Artificial Intelligence 21 (2008) 723–732724



Download	English	Version:

https://daneshyari.com/en/article/381317

Download	Persian	Version:

https://daneshyari.com/article/381317

Daneshyari.com

https://daneshyari.com/en/article/381317
https://daneshyari.com/article/381317
https://daneshyari.com/

