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This paper applies a new fuzzy arithmetic of interval calculus and fuzzy quantities to automatic control.
Practical results are obtained which overcome those based on the extension principle or a-cuts. The
proposed approach is based on a different representation of fuzzy numbers, though most common
arithmetic operators cannot be directly applied for designing a fuzzy controller due to the unjustified
overestimation effect. To avoid this phenomenon, a procedure based on an “exact” resolution calculus
is proposed, whose solutions allow creating a fuzzy internal model control scheme. The validity of the
new method is illustrated by a real-time educational engineering application on classical control
design: a coupled tanks system.
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1. Introduction

Human reasoning frequently relies on knowledge as well as on
uncertain data (inaccurate, imprecise, incomplete, inexact, approx-
imate or probabilistic). While automatic control tools make techno-
logically possible to solve many problems based on precise
knowledge, handling uncertain information still remains a shady
area. This is the case when a human control operator is inside the
control loop and/or available information is patchy (missing, etc.), for
which standard working tools often show to be inappropriate for
data processing. Several theories dealing with uncertainty and
imprecision allow these problems to be treated, for example, prob-
ability theory, interval theory based on Moore’s arithmetic (Moore,
1966), and the fuzzy set theory introduced by Zadeh (1965). These
areas are still the subject of a considerable amount of basic and
applied research. Possibility theory — an alternative to the probabil-
istic approach - was first introduced by Zadeh (1978) and further
developed by Dubois and Prade (1988). It is an extension of fuzzy set
theory that intends to represent both uncertainty and imprecision in
the output through the use of possibility and necessity measures.
Another well-known approach is the Dempster-Shafer theory,
a mathematical framework to deal with evidence based on belief
functions and plausible reasoning (Shafer, 1976).

Applications have become increasingly varied, especially in the
area of control (Sala et al., 2005; Jaulin et al.,, 2001; Kulish and
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Miranker, 1981). Many of them refer to interval theory (Moore,
1966, 1979; Kulish and Miranker, 1981) while others make use of
trapezoidal or triangular fuzzy number-based arithmetic (Dubois
and Prade, 1978, 1979; Dubois et al., 2004). The latter are generally
based on Zadeh’s extension principle (Zadeh, 1965; Dubois and
Prade, 1979), fuzzy relations (Sanchez, 1984), or the so-called
o-cuts (Zhao and Govind, 1991). However, no general approach
allowing common arithmetic operations for fuzzy numbers has
been developed.

This paper uses ¢-calculus arithmetic (Roger and Lecomte, 1998;
Lamara et al, 2006) to solve fuzzy intervals and quantities in
automatic control. This arithmetic deals with fuzzy numbers and
has more practical interest than the extension principle or the a-cut
based methods. Instead of modeling a fuzzy quantity using a
“classical” membership function (trapezoidal, triangular, L-R func-
tion, Gaussian, etc.), which is very often defined in a subjective way,
they are modeled by a cumulative distribution function based on
classical statistics, hereby allowing imprecise data and uncertainties
to be treated (Roger and Lecomte, 1998; Lamara et al., 2006, 2007;
Lamara, 2007). Though existing methods found in the literature are
not disregarded, this approach presents a way of reasoning and
solving problems which entitles the user to a simpler implementa-
tion. Since the proposed method is close to probability and classical
statistics, it has led - at the first stage - to the analysis of imprecise
data as well as to the extension of statistical tools (Lamara et al.,
2007; Lamara, 2007). A complete and coherent arithmetic based on
fuzzy logic techniques and interval analysis has been then proposed
(Lamara et al.,, 2006, 2007). For this algebra, a Matlab toolbox was
developed which allows the use of operators and functions such as
square, square root, etc.
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Nevertheless, as it is usually the case for interval and fuzzy
arithmetic, results of cumulative algebra operations can lead to strong
overestimations, which, if unjustified, are corrected via a “non
pessimistic” calculus (Lamara, 2007). Based on the latter as well as
on the inverse of the fuzzy process model, a controller is constructed.
Notice that inversion-based approaches only apply to stable systems
with a minimum phase behavior (systems whose inverted dynamics
are stable). This assumption is therefore made onwards and can be
found in several papers concerned with fuzzy internal model control
(Hunt and Sbarbaro, 1991; Edgar and Postlethwaite, 2000b; Awais,
2005; Boukezzoula et al., 2003; Vermeiren et al., 2008).

The paper is structured in the following way. In Section 2,
@-calculus arithmetic, i.e. modeling of fuzzy numbers, their
realization and extension and the weighted fuzzy fusion operator
are recalled. In Section 3, a fuzzy internal control model is
proposed based on the inversion of the fuzzy process model M.
To avoid overestimated results due to fuzzy calculation, an
“exact” calculus algorithm is proposed. Simulation results are
given to illustrate the feasibility of the proposed method. Finally,
a real-time control on the coupled tanks system is presented in
Section 4.

2. ¢-Calculus arithmetic

This section summarizes ¢-calculus arithmetic (Roger and
Lecomte, 1998; Lamara et al., 2006), and presents the Weighted
Fuzzy Fusion (WFF) operator (Lamara et al., 2007; Lamara, 2007).

2.1. Original modeling of fuzzy numbers

In general, fuzzy numbers are defined as fuzzy quantities
(Dubois and Prade, 1988) while in practice, fuzzy intervals and
fuzzy numbers are mixed up. Traditionally, a fuzzy number a is
modeled by its membership function p;, which is a non-zero
function on a bounded set called support and denoted as
Supp(a) c R. For instance, a triangular fuzzy number (TEN) 4, is
represented by the shorthand triplet @ = (b, m, c) with y;(m)=1,
where m is called mode and the support is defined by the interval
Supp(@) = [b, c]. Throughout the paper, instead of their member-
ship function, fuzzy numbers will be represented by their

distribution function ¢; which is defined as follows:
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Due to this definition, for every fuzzy number da, ¢;(x):
Supp(a)—[0,1] is a non-decreasing function. The existence of its
inverse ¢3! :[0,1]-Supp(d)=Ia,a] is therefore guaranteed and
will play an important role in defining the subsequent operations.

Convergence of f_+oo°° Uz (0 dt (finite cardinality of a) follows
from considering only membership functions on a compact
support I =[a, a] C R. The set of fuzzy numbers thus represented
is called @; it is isomorphic to the set of increasing monotonous
functions mg;(x) : Supp(d)—[0, 1]. Definition of fuzzy number
model d e @ is therefore restricted to

Pa(X) = M

0 if x<a
Pa=1 Pa if xela, @ )
1 if x>a

Five membership functions (singleton, interval, triangular, sigmoid
and trapezoidal fuzzy numbers) are shown in the first row of
Figs. 1 and 2, while their corresponding distribution functions appear
in the second row. Notice that the distribution of a singleton is a step
function while that of an interval is a ramp between its bounds.

2.2. Fuzzy realization and extension

In a very concrete way - especially for control - it is often
necessary to define relations between crisp numbers and fuzzy
numbers, i.e. from @ to R and R to @. The first one, called
realization, allows defining which crisp number is associated with
a given fuzzy number. The second one, called extension, allows
defining a fuzzy number from a crisp value. In fuzzy control these
concepts correspond to defuzzification and fuzzification, respec-
tively (Dubois and Prade, 2005).

Of course, these operations are not unique. For example
possible realizations of a fuzzy number a are as follows:

® R..4(d): median realization. For a distribution function ¢, it
corresponds to the real number a, verifying ¢;(ap) = 0.5, i.e.

Rinea(@) = ¢ '(0.5) 3
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Fig. 1. Modeling of singleton, interval and triangular fuzzy numbers.
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