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a b s t r a c t

A measurement system has been developed using a single tube capacitive sensor to accurately

determine the fluid level in non-stationary tanks, namely automotive fuel tanks. The system determines

the fluid level in the presence of dynamic slosh. A neural network-based approach is used to process the

sensor signal and achieve substantial accuracy compared with the averaging method, which is normally

used under such conditions. The sensor readings were obtained by experimentation carried out under

various dynamic conditions. The sensor response was recorded at various slosh frequencies and fuel

volumes; which was then used to train three different neural network topologies. Field trials were

carried out to obtain the actual driving data for the purpose of testing the neural networks using

MATLAB software. One static neural network topology, namely Feed-forward Backpropagation Neural

Network, and two dynamic neural network topologies, namely Distributed Time Delay Neural Network

and NARX Neural Network, have been investigated in this work. The developed fluid level measurement

system is capable of determining the fluid level in a dynamic environment with a maximum error of

8.7% by using the two dynamic neural networks, and 0.11% using the static feed-forward back-

propagation neural network.

& 2009 Elsevier Ltd. All rights reserved.

1. Introduction

Capacitive sensors are increasingly becoming a substitute for
the mechanical devices in the industrial and automotive applica-
tions, as they provide the benefits of long-term reliability even in
hostile environments. A capacitive sensor has no moving parts. It
determines the fluid level based on the changing capacitance
value. The capacitance depends on the dielectric constant, the
area of the conducting plate, and the separation distance of the
plates. If the properties of a capacitor remain fixed, except for its
dielectric constant, then the capacitance in terms of its dielectric
constant can be calculated as follows:

CðerÞ ¼ er
e0A

d

� �
ð1Þ

where C is the capacitance in farads (F), ey is the relative static
permittivity (dielectric constant) of the material between the
plates, e0 is the permittivity of free space, A is the area of each
plate in square metres, and d is the separation distance of the two
plates.

The capacitance value is proportional to the dielectric constant
of the material that separates the two conducting plates (Serway
and Jewett, 2004). Therefore, any change in the fluid level will
correspond to a change in the dielectric constant, hence the
capacitance value.

The fluid level measurement will experience error in level
readings for applications where the storage tank is non-stationary,
such as an automotive fuel tank. Due to the nature of the driving
conditions, a fuel tank is normally subjected to acceleration,
which induces slosh waves in the fuel tank. A level sensor might
erroneously sense these fluctuations in the fluid to be the actual
levels of the fluid, thereby producing inaccurate fluid level
reading.

A fuel tank may contain contaminants and could also experi-
ence variations in the temperature. Results from the Design of
Experiments (DOE) have indicated significant effects of tempera-
ture variations and contaminants on the fuel level measurement.
The influence of temperature variations along with contamination
can result in shifts in the dielectric constants. The response of the
sensors in such environments could be influenced by the
environmental parameters in a nonlinear manner (Patra, 2004).

Several methods have been used to compensate for these
dynamic effects. Kobayashi and Obayashi (1983) used an
averaging method that simply averages the fuel volume signal
during various vehicle conditions detected by the speed
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sensor. The averaging methods Kobayashi and Obayashi (1983),
Tsuchida (1981), and Kobayashi and Kita (1982) could be
useful in approximating the liquid level while the liquid fluctuates
but it nevertheless gives inaccurate results especially at varying
temperature levels. Fig. 1 shows the errors obtained using the
averaging method in a fuel tank filled with 45 L of fuel at various
levels of acceleration. Artificial Neural Networks (ANN) can be
used to effectively solve such problems. Intelligent machines and
sensors can be developed with neural networks that are obliged to
operate in dynamic environment without compromising accuracy.
Patra et al. (2008) and Song (2007) have used neural networks to
develop intelligent sensors that compensate for the nonlinear
environmental parameters.

This paper illustrates a neural network approach to determine
the fluid level in a dynamic environment without compromising
the accuracy. To reduce the complexity of the problem, the
capacitive sensor was calibrated to the ambient temperature and

fuel type; thereby the influence of temperature and contamina-
tion factors on the fluid level measurement could be ignored. The
principal focus of this work is related to eliminating the effects of
liquid slosh on fluid level measurement using an artificial neural
network approach.

2. Neural network-based approach

A fuel tank containing fluid will exhibit slosh waves
whenever the walls of the container experience acceleration
(Wiesche, 2003). The induced slosh pattern will produce
natural sloshing frequencies, which are associated with the
shape of the storage tank and the existing quantity of the fluid.
The capacitive sensor output will exhibit the slosh patterns
produced in the fuel tank when it is sampled at a high sampling
rate.

Artificial neural network can be trained with different signals
signifying different slosh patterns to determine the actual fuel
volume residing in the tank. Feature extraction is performed in
signal pre-processing by applying Fourier Transformation on the
raw sensor signal, which can reduce the size of the input data as
well as increase the speed and performance of the neural network.
A low-pass filter that eliminates high frequencies (over 150 Hz) is
also applied in signal pre-processing. Fig. 2 illustrates the system
block diagram that was used to develop the neural network
approach to fluid level measurement.

An accumulated sampled signal of 10 s duration is converted
into the following two forms, which is then fed into the neural
network:

� Frequency response—representing slosh waves
� Average volume—representing average value of the fluid

The capacitive sensor was calibrated to the ambient fuel and
temperature, therefore, the effects of temperature and contam-
ination can be assumed as insignificant.

3. Network topologies

The following two commonly used network topologies are
investigated in developing the presented neural network based
fluid level measurement system:

� Static Feed-Forward Network
� Dynamic Networks (with and without feedback)

3.1. Static feed-forward network

Feed-forward Backpropagation (BP) neural network is the
static network, where signals travel in one direction only, i.e.
from input to output. There is no loop or feedback between
neurons and their inputs and outputs, which makes them straight
forward. Backpropagation network topology is extensively used in
pattern recognition. Fig. 3 illustrates the structural diagram of the
BP network that takes the signal features and produces the fluid
volume figure as the output.

VolumeðpÞ ¼ purelinbLWðtansigðIWpþb1ÞÞþb2c ð2Þ

where p is the input signal of length R; IW and LW are input and
layer weights, respectively; b1,2 are the bias values of each neuron.
The network consists of S1 number of neurons with tansig and
purelin as the transfer functions.
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Fig. 1. Slosh test at various acceleration or slosh frequencies. The fuel level signal

is averaged over a period of 10 s. Largest error was 31 litres or 68%.
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Fig. 2. System block diagram.
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