
Managing Internet routers congested links with a Kohonen-RED queue$

Emmanuel Lochin a,�, Bruno Talavera b

a CNRS-LAAS - ISAE, Université de Toulouse, ISAE, 1, Place Emile Blouin, BP 75064, 31033 TOULOUSE Cedex 5, France
b Université Pierre et Marie Curie, Polytech’ Paris-UPMC, France

a r t i c l e i n f o

Article history:

Received 23 November 2009

Received in revised form

28 July 2010

Accepted 15 October 2010
Available online 3 November 2010

Keywords:

Active queue management

Computer networks

Congestion control

Kohonen neural networks

TCP

a b s t r a c t

The behaviour of the TCP AIMD algorithm is known to cause queue length oscillations when congestion

occurs at a router output link. Indeed, due to these queueing variations, end-to-end applications

experience large delay jitter. Many studies have proposed efficient active queue management (AQM)

mechanisms in order to reduce queue oscillations and stabilize the queue length. These AQM attempt to

improve the random early detection (RED) model. Unfortunately, these enhancements do not react in a

similar manner for various network conditions and are strongly sensitive to their initial setting

parameters. Although this paper proposes a solution to overcome the difficulties of configuring the

RED parameters by using a Kohonen neural network model; another goal of this study is to investigate

whether cognitive intelligence could be placed in the core network to solve such stability problem. In our

context, we use results from the neural network area to demonstrate that our proposal, named Kohonen-

RED (KRED), enables a stable queue length without complex parameters setting or passive measurements

to obtain a correct configuration.

& 2010 Elsevier Ltd. All rights reserved.

1. Introduction

TCP, the predominant Internet transport protocol, has the capability
to adapt its sending throughput to the changing bandwidth available
following the principle described in Jacobson (1988). TCP considers a
loss of packets as a congestion inside the network and reacts to this
congestion signal by halving its current emission window of packets.
A congestion event (or loss event) corresponds to one or several losses
occurring in one TCP window during one current round trip time
period. When a drop tail queue overflows, several TCP sources can
observe a bunch of losses which can lead to a decrease of the
throughput involving a brutal decrease of the buffer occupancy.
Then, as TCP always operates opportunistically, it restarts to increase
exponentially (or linearly following the current mode is operating) in
order to occupy the most capacity possible. As a result, this effect results
in an accordion phenomenon where queues are constantly oscillating.
This behaviour is harmful for the end-hosts which observe a constant
oscillation of their current throughput that can be problematic for
applications which need a relatively stable rate over the time.

More than 10 years ago, the random early detection (RED) was
proposed to avoid congested Internet links (Floyd and Jacobson,
1993). The goal was to replace the current deployed drop tail
queues known to provoke large queue oscillations when router’s
buffers overflow. The main idea of the RED algorithm is to drop

packets before the queue is full. As a consequence, when a TCP
source gets such preventive drops, it decreases the emitted
throughput according to the AIMD (additive increase multiplica-
tive decrease) algorithm inherent to the TCP protocol. RED drops
packets with an increasing probability (maxp) when the occupancy
of the queue lies between two thresholds (minth, maxth). The goal of
RED is to maintain a small buffer occupancy and avoid casual bursts
of packet losses.

In Ranjan et al. (2004), the authors illustrate that the instanta-
neous queue oscillations lead the system to a chaotic state. They
show that the root of the problem comes from the estimated
average queue size which is computed with inaccurate initial
values. Then, during an experiment, the queue dynamics slide from
a stable fixed point to an oscillatory behaviour and finally to a
chaotic state. As a direct consequence, the network operators
cannot provide any Quality of Service (QoS) guarantee to their
customers as they would need to continuously adapt their
parameters for different traffic conditions.

Several other studies emphasized these issues, and in particular
the authors in May et al. (1999) and Ziegler et al. (2001) have
weighted up the disadvantages for deploying such a mechanism
over the Internet. In certain cases, increasing the number of
dropped packets can have unexpected effects on the overall
performance (Ziegler et al., 2001). This has motivated the use of
preventive marking instead of preventive dropping with the use of
the explicit congestion notification (ECN) flag (Ramakrishnan et al.,
2001) of IP packets. In this case, instead of dropping packets, the
RED queue marks the IP packet’s ECN flag to notify senders that
they are crossing a congested link and that they should decrease

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/engappai

Engineering Applications of Artificial Intelligence

0952-1976/$ - see front matter & 2010 Elsevier Ltd. All rights reserved.

doi:10.1016/j.engappai.2010.10.012

$Part of the results have been presented at IEEE ICC 2008.
� Corresponding author.

E-mail addresses: emmanuel.lochin@isae.fr (E. Lochin),

bruno.talavera@upmc.fr (B. Talavera).

Engineering Applications of Artificial Intelligence 24 (2011) 77–86

www.elsevier.com/locate/engappai
dx.doi.org/10.1016/j.engappai.2010.10.012
mailto:emmanuel.lochin@isae.fr
mailto:bruno.talavera@upmc.fr
dx.doi.org/10.1016/j.engappai.2010.10.012

their sending rate. Although this flag is currently implemented both
in end-hosts (GNU/Linux, Mac OSX and Windows Vista and newer)
and inside the core network (Cisco IOS implements a RED/ECN
variant called WRED/ECN), ECN still remains disabled by default for
all these systems and the following study (Medina et al., 2005)
published in 2004 precises that ECN is only used by 2.1% of
computers.

Despite of all these issues, the RED algorithm is recommended
by the Internet Engineering Task Force (IETF) with the expectation
that the providers make their own effort to select suitable RED
control parameters for their network (Braden et al., 1998). Unfor-
tunately, some past work have already suggested that RED is
fundamentally hard to tune (Low et al., 2003) while others claim
that tuning its parameters is an inexact science (May et al., 1999).

All these configuration problems partly explain the reason why
network operators do not enable this algorithm. Thus, it seems
obvious and necessary to find a method to easily and automatically
tune the RED parameters.

Several studies attempted to enhance the basic RED algorithm (Feng
et al., 1999; Floyd et al., 2001; Hollot et al., 2001; Athuraliya et al., 2001;
Low et al., 2003; Suthaharan, 2007; Kim and Yeom, 2008). As a non-
exhaustive list, fair RED (FRED) (Feng et al., 1999) and adaptive RED
(ARED) (Floyd et al., 2001) introduced the notion of adaptive AQM.
These adaptive strategies recompute the maxp probability value
following an AIMD algorithm. However, the parameters that weight
this AIMD process still remain difficult to estimate and far from being
generic as we will see in our simulation. In Low et al. (2003), the authors
show that RED parameters can be tuned to improve stability, but only
at the cost of large queues even when they are dynamically adjusted. In
Suthaharan (2007), the author introduces an interesting approach
where the algorithm dynamically adjusts the moving exponential
weighted computation parameter which is normally static, in order to
impact on the accuracy of the rate estimation. Even if other different
queueing approaches have been proposed to improve the efficiency of
RED-like algorithms in various network conditions, the parameters
used to set these new AQM are sometimes more complex to determine
than RED ones. In particular, this is the case for the PI controller (Hollot
et al., 2001). Nowadays, general parameters able to stabilize the queue
do not yet exist whatever the AQM used and we could discuss whether
the problem is in fact solvable.

Although the validity of RED concept is still debated, we claim
that the parameters’ settings are one of the main barrier to its
acceptance and that this problem is a perfect candidate for the
neural networking area. In this paper, we seek at evaluating
whether neural network theory can help by simply acting on the
standard RED parameters. As a result, this paper does not attempt
to extend the prolific models previously proposed. We do not
attempt to design another queueing mechanism or propose to
enhance the core mechanism itself. We only focus on the optimal
estimation of the probability parameter denoted maxp. Thus, this
paper aims at illustrating the impact of the role of learning
mechanisms on core network Internet problems with similar
motivation than the one presented in Beverly and Sollins (2007).
The purpose is to illustrate the perfect capability of a class of neural
networks to solve this stability issue without requesting complex
tuning from network engineers.

This paper is structured as follows. Section 2 presents the
motivation of this work. Section 3 gives pointers related to
the implementation of the core mechanism. Then, Section 4 evaluates
the proposal and finally Section 6 gives the perspectives of this work.

2. Motivation of using a Kohonen neural network

Kohonen networks (Kohonen, 2001) are a class of neural networks
known to solve the pole balancing problem (Makarovic, 1991).

Pole balancing is a control benchmark historically used in mechanical
engineering. It involves a pole placed on a cart via a joint allowing
movement along a single axis. The cart is able to move along a track
with a fixed length as represented in Fig. 2(a). The aim of the problem
is to keep this pole balanced by applying forces to the cart.

The main idea of our contribution is based on the analogy
existing between this balancing problem and the RED queueing
problem. In RED, we can compare the pole balancing to the
evolution of the queue occupancy which oscillates between both
thresholds (minth, maxth).

As shown in Fig. 1, the probability to drop (or to mark) packets
increases when the buffer occupancy increases following the
probability scheme configured (i.e. following both thresholds set
and the slope of the probability curve). The physical forces resulting
on the pole have a similar role to the packets arrival rate in the
queue. Fig. 2 illustrates this view.

minth maxth avg queue length

maxp

1

P(X)

Fig. 1. The random early detection (RED) queue management scheme.

Packetsmax_th

max_pInput packets Output packets

min_th

Fig. 2. Analogy between the single pole balancing problem and RED AQM: (a) pole

balancing and (b) adaptive RED.

Table 1
Input and output values used.

Pole RED

input_value[1] Previous position Previous

queue length

input_value[2] New position Current

queue length

output_value[1] Force to apply maxp

in Newton

E. Lochin, B. Talavera / Engineering Applications of Artificial Intelligence 24 (2011) 77–8678

Download English Version:

https://daneshyari.com/en/article/381473

Download Persian Version:

https://daneshyari.com/article/381473

Daneshyari.com

https://daneshyari.com/en/article/381473
https://daneshyari.com/article/381473
https://daneshyari.com

