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a b s t r a c t

A robust scheduling method for max-plus linear systems is proposed. A principal concern in scheduling

problems is how to accomplish robustness against external disturbances. To accomplish this, methods

based on model predictive control (MPC) have been put forward to control system parameters or control

inputs. In this context, we recently proposed a method for indirectly controlling the state variables by

utilizing the idea of dead time. The idea imposes constraints for upper bounds of in-processing jobs

between facilities, whereas several practical systems also consider the lower bounds. This paper,

therefore, considers a modeling and robust scheduling method that takes into account both constraints.

A numerical simulation for a transportation system is also presented in order of the method’s

effectiveness.

& 2009 Elsevier Ltd. All rights reserved.

1. Introduction

This paper derives a max-plus linear (MPL) state-space
representation (hereafter called MPL representation) for repetitive
systems with multiple inputs and multiple outputs (MIMO)
structure taking into account the number of in-processing jobs,
and proposes a robust scheduling method for corresponding
systems. Methods for modeling discrete event systems utilizing
MPL representation are applied to fields of production systems
(De Schutter and Boom, 2001), chemical plants (Schullerus and
Krebs, 2001), and transportation systems (Braker, 1991; Heider-
gott and De Veries, 2001; De Schutter and Boom, 2002). Much
attention has been paid to these applications.

In MPL representation, changes of states in systems can be
described by linear equations of max-plus algebra (Cohen et al.,
1989; Baccelli et al., 1992; Heidergott et al., 2006). These
equations are similar to state-space representation in modern
control theory. The simplest form is stated by three constant
matrices; the system, input, and output matrices. It can describe
systems in which there are features such as; (1) no-concurrency in
identical resource, (2) parallel execution of multiple tasks and/or
(3) synchronization of multiple tasks. Based on these features,
extensions whose fundamental idea is similar to queue (Krivulin,
1996) or dead time (Goto, 2008) can consider the maximum
number of in-processing jobs that can exist in a single facility or
between facilities. By this extension, the method can also be
applied to scheduling problems for productions systems with

limited storage space or for train traffic control systems. Note that
the terms of ‘facility’, ‘job’, and ‘task’ are interpreted as ‘machine’,
‘batch’ and ‘processing’ in production systems, respectively.
Moreover, transportation systems interpret them as ‘station’,
‘train’, and ‘transportation’, respectively.

A principal concern in scheduling problems is the robustness
of the solution. For instance, when the occupation times of
facilities and/or the predicted output time are changed, the state
variables, input variables, and the output ones desirably keep their
values close to their previous ones. Methods based on model
predictive control (De Schutter and Boom, 2001; Boom and De
Schutter, 2002) are often utilized to conform to this requirement
by essentially directly controlling the input variables or system
parameters. Other methods based on queue or dead time control
the state variables indirectly by giving constraints regarding the
upper limits of in-process jobs. However, they may often be useful
for robustness when setting constraints for the lower limits of in-
process jobs. For example, train dispatchers sometimes instruct
to retard some trains to avoid congestion, when another train
has been delayed. Moreover, the TOC theory (Goldratt, 1990;
Stein, 1996) which has garnered much attention recently, requires
that a requisite minimum inventory in previous steps of the
bottleneck processes and the shipping ones be stored. It also
requires that the non-bottleneck processes be subordinated to the
bottleneck ones.

Hence, this paper extends the conventional MPL representation
and proposes a robust scheduling method taking into account the
upper and lower limits of in-process jobs. The extended state-
space representation is a set of simultaneous linear equations in
max-plus algebra, and its solution provides a robust schedule. In
the latter part of this paper, a simple numerical simulation for a
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transportation system is carried out, confirming the effectiveness
of the proposed method.

2. Extended MPL representation

In this section, first, mathematical preliminaries are given and
then an extended MPL representation that can take into account
the minimum number of in-process jobs derived.

2.1. Mathematical preliminaries

Denote the real field by R, in D ¼ R[ {�N} and for x, yAD, the
following operators are defined.

x� y ¼ maxðx; yÞ; x� y ¼ xþ y

The operator for multiplication � is abbreviated as in conven-
tional algebra when no confusion is likely to arise. Unit elements
for � and � are denoted by e( ¼ �N) and e( ¼ 0), respectively. If
mpn

�
n

k¼m
xk ¼maxðxm; xmþ1; . . . ; xnÞ

For a matrix XADm�n, [X]ij represents the (i,j)-th element of X. If
XADm� l, YADl� p,

½X � Y �ij ¼ �
l

k¼1
ð½X�ik � ½Y �kjÞ ¼ max

k¼1;...;l
ð½X�ik þ ½Y �kjÞ

Regarding the unit matrix, emnADm�n represents the unit
matrix for � whose elements are all e, and emADm�m for � in
which only diagonal elements are e and all off-diagonal elements
are e.

2.2. Formulation

Suppose the following constraints are imposed on systems.

� The number of facilities is n, p is the number of external inputs
and q the external outputs.
� Constraints on in-process jobs are imposed only between

facilities, and not with any external inputs or outputs.
� Other constraints such as no-concurrency, parallel processing,

or synchronization are taken into account in an analogous way
to conventional MPL representation.

For simplicity, let us ignore transportation times between
facilities. Fig. 1 shows relevant constraints regarding facility i

(1pipn). Denote the occupation time by di(X0), the job number
by k, and the earliest completion time by [xE(k)i], where the suffix
E represents the earliest time. [u(k)]j represents the feeding time
for external input j. Ri, Pi, Mih, and Kil represent a collection of
numbers of the preceding facilities, those of the external inputs
and the downstream facilities in which the maximum number of
in-process jobs with facility i is h, and those of upstream facilities
in which the minimum number of in-process jobs is l. Note that
the constraints regarding the in-process jobs are imposed on the
next two time instants; the starting point in the i-th facility and

the completion point in other facilities. Other events can be
adopted for this formulation, but are more complicated. The
following matrices P, F0, H0

(h), L0
(l)ADn�n, B0ADn� p, C0ADq�n are

introduced to specify the structure of the system.

½P�ij ¼
di : if i ¼ j

� : if iaj

(

½F0�ij ¼
e : facility i has a preceding facility j

� : facility i does not have a preceding facility j

(

½B0�ij ¼
e : facility i has an external input j

� : facility i does not have an external input j

(

½C0�ij ¼
e : external output i has a preceding facility j

� : external output i does not have a preceding facility j

(

In accord with the discussions in (Goto and Masuda, 2006),
these constraints in Fig. 1 can be formulated as follows.

½xEðkÞ�i � di

¼ �
j2Ri

½xEðkÞ�j � �
j2Pi

½uðkÞ�j � �
H

h¼1
�

j2Mih

½xðk� hÞ�j � �
L

l¼1
�

j2Kil

½xðkþ lÞ�j

¼ �
n

j¼1
ð½F0�ij þ ½xðkÞ�jÞ � �

p

j¼1
ð½B0�ij þ ½uðkÞ�jÞ � �

H

h¼1
�
n

j¼1
ð½HðhÞ0 �ij þ ½xðk� hÞ�jÞ

� �
L

l¼1
�
n

j¼1
ð½LðlÞ0 �ij þ ½xðkþ lÞ�jÞ

¼ ½F0xEðkÞ�i � ½B0uðkÞ�i � �
H

h¼1
½HðhÞ0 xðk� hÞ�i � �

L

l¼1
½LðlÞ0 xðkþ lÞ�i (1)

where H and L represent the maximal of the maximum number of
in-process jobs and those for the minimum number in the entire
system, respectively. By transposing di on the left size of Eq. (1) to
the right side, the next equation is obtained using P.

½xEðkÞ�i ¼ P½F0xEðkÞ � B0uðkÞ � �
H

h¼1
HðhÞ0 xðk� hÞ � �

L

l¼1
LðlÞ0 xðkþ lÞ�

� �
i

(2)

This holds true for all i (1pipn). Here the latest completion
times for jobs (k)�(k+N�1) are considered. Eq. (2) holds true even
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Fig. 1. Relevant facilities and external inputs regarding to the i-th facility.

½HðhÞ0 �ij ¼
e : the maximum number of in-process jobs is h between facility i and its downstream facility i

� : there are not any constraints for in-process jobs between facilities i and j

(

½LðlÞ0 �ij ¼
e : the minimum number of in-process jobs is l between facility and its upstream facility j

� : there are not any constraints for in-process jobs between facilities i and j

(
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