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a b s t r a c t

This paper presents a new approach to economic dispatch (ED) problems with non-smooth cost

functions using a particle swarm optimization (PSO) technique. The practical ED problems have non-

smooth cost functions with equality and inequality constraints, which makes the problem of finding the

global optimum difficult when using any mathematical approaches. Since, standard PSO may converge

at the early stage, in this paper, a modified PSO (MPSO) mechanism is suggested to deal with the

equality and inequality constraints in the ED problems. To validate the results obtained by MPSO,

standard particle swarm optimization (PSO) and guaranteed convergence particle swarm optimization

(GCPSO) are applied for comparison. Also, the results obtained by MPSO, PSO and GCPSO are compared

with the previous approaches reported in the literature. The results show that the MPSO produces

optimal or nearly optimal solutions for the study systems.

& 2010 Elsevier Ltd. All rights reserved.

1. Introduction

Economic dispatch (ED) is one of the most important problems
to be solved in the operation and planning of a power system
(Wood and Wollenberg, 1996). The primary objective of the ED
problem is to determine the optimal combination of power
outputs of all generating units so that the required load demand
at minimum operating cost is met while satisfying system
equality and inequality constraints. In the traditional ED problem,
the cost function for each generator has been approximately
represented by a single quadratic function and is solved using
mathematical programming based on the optimization techni-
ques such as lambda-iteration method, gradient method, and
dynamic programming method, etc. However many mathematical
assumptions such as convex, quadratic, differentiable and linear
objectives and constraints are required to simplify the problem.

The practical ED problem with ramp rate limits, prohibited
operating zones, valve-point effects and multifuel options is
represented as a non-smooth or non-convex optimization pro-
blem with equality and inequality constraints and this makes the
problem of finding the global optimum difficult and cannot be
solved easily by traditional methods.

A considerable amount of work has been adopted by
researches to solve a practical ED problem by considering
different non-convex cost functions using various heuristic
approaches (Chen and Chang, 1995; Chiang, 2003, 2005; Gaing,
2003; Jayabarathi and Sadasivam, 2000; Lee et al., 1998; Lin, et al.,
2001, 2002; Orero and Irving, 1996; Park, et al., 2005, 2007, 1993;
Selvakumar and Thanushkodi, 2007; Sinha et al., 2003; Walters
and Sheble, 1993; Wong and Wong, 1994; Wong and Fung, 1993;
Yang, et al., 1996). This paper introduces a modified PSO (MPSO)
and its solution to the non-convex ED problems. Two types of
non-smooth ED problems; ED with ramp rate limits and
prohibited operating zones and ED with combined valve-point
loading effects and multifuel options will be considered.

The PSO has been proven to be very effective for static and
dynamic optimization problems. But in some cases, it converges
prematurely without finding local optimum. In PSO algorithm, it
is possible for the inertia weight to drive all velocities to zero
before the swarm manages to reach a local extremum. Thus, in
this paper MPSO is introduced to address the issue of premature
convergence to solutions that are not guaranteed to be local
extrema.

To validate the results obtained by the MPSO, the problem is
solved by PSO. Also, the GCPSO, which is introduced by Van den
Bergh and Engelbrecht (2002) to address the issue of
premature convergence of PSO, is applied to validate the results.
Furthermore, the results obtained by MPSO, PSO and GCPSO
are compared with those obtained by other approaches reported
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in the literature. To make a proper background, PSO, GCPSO and
the proposed modified PSO (MPSO) are explained in the next
Section.

2. PSO, GCPSO and MPSO algorithms

2.1. PSO algorithm

The particle swarm optimizer is a population based optimiza-
tion method that was introduced by Kennedy and Eberhart
(1995). In PSO, each particle moves in the search space with a
velocity according to its own previous best solution and its
group’s previous best solution. The dimension of the search space
can be any positive integer. Each particle updates its position and
velocity with the following equations:

Xiðtþ1Þ ¼ XiðtÞþViðtþ1Þ ð1Þ

where Xi(t)and Vi(t) are vectors representing the position and
velocity of the ith particle, respectively and

Vi,jðtþ1Þ ¼wVi,jðtÞþc1r1,jðpbi,j�Xi,jðtÞÞþc2r2,jðgbj�Xi,jðtÞÞ ð2Þ

where jA1, 2,y,d represents the dimension of the particle;
0rwo1 is an inertia weight determining how much of particle’s
previous velocity is preserved; c1 and c2 are two positive accelera-
tion constants; r1,j, r2,j are two uniform random sequences sampled
from U(0, l); pbi is the personal best position found by the ith
particle; and gb is the best position found by the entire swarm so far.

The PSO has been proven to be very effective for static and
dynamic optimization problems. But in some cases, it converges
prematurely without finding even a local optimum. Standard PSO
may converge at the early stage: the best particle moves based only
on the inertia term since Xi¼pbi¼gb at the time step when it
became the best. Later, its position may improve where Xi¼pbi¼gb

holds again. Also, its position will worsen, where it will be drawn
back to pbi¼gb by the social component. Therefore, it is possible for
the inertia weight to drive all velocities to zero before the swarms
manage to reach a local extremum. When all the particles collapse
with zero velocity on a given position in the search space, then the
swarm has converged, but this does not mean that the algorithm
has converged to a local extremum. It merely means that all the
particles have converged on the best position discovered so far by
the swarm. This phenomenon is referred to as stagnation. Thus, it is
possible for the standard PSO to converge prematurely without
finding even a local extremum. The MPSO is introduced in the next
section to address the issue of premature convergence to solutions
that are not guaranteed to be local extrema.

2.2. GCPSO algorithm

GCPSO was introduced by Van den Bergh and Engelbrecht
(2002) to address the issue of premature convergence to solutions
that are not guaranteed to be local extrema. The modifications to
the standard PSO involve replacing the velocity update (2) of only
the best particle with the following equation:

Vi,jðtþ1Þ ¼wVi,jðtÞ�Xi,jðtÞþpbi,jþrðtÞrj ð3Þ

where rj is a sequence of uniform random numbers sampled from
U(�1,1) and r(t) is a scaling factor determined using

rð0Þ ¼ 1:0

rðtþ1Þ ¼

2rðtÞ if successes4sc

0:5rðtÞ if failures4 fc

rðtÞ otherwise

8><
>:

ð4Þ

where sc and fc are tunable threshold parameters.

Whenever the best particle improves its personal best position,
the success count is incremented and the failure count is set
to 0 and vice versa. The success and failure counters are both
set to 0 whenever the best particle changes. These modifications
cause the best particle to perform a directed random search
in a non-zero value around its best position in the search
space.

2.3. The proposed modified PSO (MPSO) algorithm

MPSO differs from PSO by controlling the diversity of a small
population, thereby avoiding premature convergence. Assuming
in the PSO algorithm, n particles are generated randomly. The
modifications to the standard PSO involve generating one-third of
n, randomly and generating two-third of n by the following
equations:

Xiþn=3,jðtÞ ¼ Xi,jðtÞþrðXmaxj�Xi,jðtÞÞ ð5Þ

Xkþn=3,jðtÞ ¼ Xk,jðtÞ�rðXk,jðtÞ�XminjÞ ð6Þ

where jA1, 2,y,d represents the dimension of the particle;
iA1,2,y,n/3 and kA1,2,y,n/3 represent the two-third of n;
Xminj,Xmaxj represent the minimum and maximum value related

to the jth particle; r is a parameter in the interval [0, 1].
The generated populations are evaluated by the fitness

(objective) function. Then one-third of the evaluated population
with the best fitness is selected as the next generation followed by
finding the pbi and gb for the particles in the selected population.
The position and velocity of the ith particle in the selected
population are updated according to (1) and (2). Then two-third of
the population (or two-third of n) will be generated based on (5)
and (6). In MPSO the exploration is controlled by r and should
vary linearly in the interval [0, 1]. As it increases the exploration
will be increased and the algorithm avoids the premature
convergence.

By the above mechanism, the diversity of the population is
controlled. In other words, the exploration and exploitation of the
search space are increased, resulting in avoiding premature
convergence.

3. Problem formulation

For convenience in solving the ED problem, the unit generation
output is usually assumed to be adjusted smoothly and instanta-
neously. Practically, the operating range of all online units is
restricted by their ramp rate limits by forcing the units to operate
continually between two adjacent specific operation zones. In
addition, the prohibited operating zones, valve-point effects and
multifuel options must be taken into account. The traditional and
practical ED is explained below.

3.1. Traditional ED problem with smooth cost functions

In the traditional ED problem, the cost function for each
generator has been approximately represented by a single quadratic
function. The primary objective of the ED problem is to determine
the optimal combination of power outputs of all generating units so
that the required load demand at minimum operating cost is met
while satisfying system equality and inequality constraints. There-
fore, the ED problem can be described as a minimization problem
with the following objective:

min F ¼
XNG

i ¼ 1

FiðPGiÞ ¼
XNG

i ¼ 1

ðaiP
2
GiþbiPGiþciÞ ð7Þ
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