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a b s t r a c t

In this article a novel algorithm based on the chemotaxis process of Echerichia coli is developed to solve

multiobjective optimization problems. The algorithm uses fast nondominated sorting procedure,

communication between the colony members and a simple chemotactical strategy to change the

bacterial positions in order to explore the search space to find several optimal solutions. The proposed

algorithm is validated using 11 benchmark problems and implementing three different performance

measures to compare its performance with the NSGA-II genetic algorithm and with the particle swarm-

based algorithm NSPSO.

& 2009 Elsevier Ltd. All rights reserved.

1. Introduction

Most real-world optimization problems require making deci-
sions involving two or more goals that typically are in contra-
diction with each other. When these goals are the minimization or
maximization of functions they are typically referred to multi-
objective optimization (MO). From the 1950s, in the area of
operational research, a variety of methods known as classical has
been developed for the solution of multiobjective optimization
problems (MOP). These methods are based on formal logic or
mathematical programming. Some of the most representative
classical methods are linear programming, the weighted sum
method and the goal programming method (Dantzig and Thapa,
1997). As an alternative to classical methods, a variety of
techniques inspired on natural processes has emerged in the last
two decades.

The emulation of nature has inspired scientists in various fields
through the history of mankind. Recently, due to advances in
computing and the emergence of new ideas based on the behavior
of living organisms and natural processes, the techniques inspired
in nature have gained increasing interest motivated by two basic
aspects (De Castro and Von Zuben, 2004):

(1) Traditional methods have proven to be unable to adequately
handling complex problems, characterized by the lack of

complete mathematical models and the manipulation of a
large number of variables.

(2) To a variety of engineering problems there is a similar version
in nature.

Among bio-inspired optimization techniques, the most known
are genetic algorithms (AGs). The pioneering work in the practical
application of the fundamentals of AGs to MO is the vector
evaluated genetic algorithm (VEGA) (Schaffer, 1984). At present,
the most popular genetic algorithm for solving MOP is the
nondominated sorting genetic algorithm II (NSGA-II) (Deb et al.,
2002). Another bio-inspired approach is the so-called particle
swarm optimization (PSO), which was recently implemented in
the solution of MOP using algorithms such as nondominated
sorting particle swarm optimizer (NSPSO) (Li, 2003), multi-
objective particle swarm optimization (MOPSO) (Coello et al.,
2004), and time variant multi-objective particle swarm optimiza-
tion (TV-MOPSO) (Kumar et al., 2007). Another interesting
biological process that has been already implemented as an
optimization technique is the bacterial chemotaxis. About this
novel technique Amos et al. (2007) exposed the potential of
implementing bacterial chemotaxis as a distributed optimization
process, recognizing that in natural colonies, it is the interaction
and communication between bacteria the mechanism that
enables them to develop biologically advantageous patterns.

2. Multiobjective optimization problems (MOP)

A multiobjective optimization problem is defined as the
problem of finding a vector of decision variables that satisfies
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some restrictions and optimizes a vector function, which elements
represent the values of the functions. A MOP may be formulated
as follows (Deb, 2001):

Maximize=minimize : fmðxÞ m¼ 1;2; :::;M

Subject to : gjðxÞZ0 j¼ 1;2; :::; J

hkðxÞ ¼ 0 k¼ 1;2; :::;K

xL
i rxirxU

i i¼ 1;2; :::;n

where x is the vector of decision variables x=(x1, x2, ..., xn)T and
fm(x) are the m objective functions. The values xi

L and xi
U represent,

respectively, the minimum and the maximum acceptable values
for the variable xi. These values define the boundary of the search
space. The J inequalities gj and the K equalities hk are known as
constraint functions.

For MOP, instead of a single optimal, there is a set of optimal
solutions known as Pareto optimal front (POF). Any solution of
this set represents a balance between the objective functions;
therefore, it is not possible to say that there is other solution in the
search space which is superior to this one when all objectives are
considered. In the minimization MOP, Pareto optimality can be
mathematically defined as follows (Chinchuluun and Pardalos,
2007):

Pareto optimality: A point xnAS with f ðx�Þ is called (globally)
Pareto optimal (or nondominated), if and only if there exists no
point xAS such that fiðxÞr fiðx

�Þ for all i=1,2, y, m and flðxÞo flðx
�Þ

for at least one index lA{1,2, ..., m}, where S is the feasible region.
In most cases it is not easy to find analytical expressions for the

line or curve that contains the POF; thus, commonly optimal
solutions points and the objective functions values in them are
calculated. In order to find optimal solutions, there are two goals
that any multiobjective optimization algorithm (MOA) seeks to
achieve (Deb, 1999): (1) Guide the search towards the global
Pareto optimal region; (2) Maintain the population diversity in the
Pareto optimal front.

In this work a novel algorithm based on bacterial chemotaxis
and communication exchange in bacterial colonies is developed to
solve MOP. The proposed algorithm is validated using 11 bench-
mark problems. Three different performance measures were also
implemented to compare the performance of the proposed
algorithm with the NSGA-II genetic algorithm and with the
particle swarm-based algorithm NSPSO.

3. Bacterial chemotaxis

Chemotaxis is a cell movement in response to gradients of
chemical concentrations present in the environment. This move-
ment and the chemical substances involved in it are used by
bacteria as a survival strategy that allows them to search for
nutrients and avoid noxious environments.

A bacterium is a prokaryotic unicellular organism. Its structure
is basically conformed by a central body of microscopic size that
can take many different forms (Young, 2006) and whose size can
vary from 0.01 mm3 to a volume 1010 times bigger (Rappe et al.,
2002; Angert et al., 1993). Many bacteria are endowed with a
series of rotating flagella in its cell surface that act as propellants,
allowing them to swim at a speed of 10–35 mm/s (Eisenbach et al.,
2004). In addition to the appropriate structure to move in an
autonomous way, bacteria have potent receivers (chemorecep-
tors) located at the cell surface, capable of detecting temporal-
space changes of chemical concentrations in the environment that
surrounds them. In this way, when an external perturbation is
detected, bacteria use their memory (Segall et al., 1986) to make a
temporal-space comparison of the gradients found. Depending on

the external conditions sensed, bacteria change their movement
from a random walk to a biased random walk.

This work was based on chemotaxis process of one of the most
studied bacterium, the (E. coli). This is a bacterium present in
human intestine that has 8–10 left-handed helix configured
flagella placed randomly on its cell body. These flagella used for
locomotion, can rotate at high speeds (270 r.p.s.) (Kudo et al.,
1990), stop momentarily and change the direction of rotation in a
controlled manner (Eisenbach et al., 2004). As a result of the
flagella helix configuration, when they all move counterclockwise
act as propellants moving the bacterium gently forward in an
almost rectilinear movement called swim. Otherwise, if the
flagella rotate clockwise, they destabilize, propelling the bacterial
body in different directions at the same time, so the bacterial body
tumbles randomly. Using different combinations of swim and
tumble, varying the length and duration of these movements,
bacteria explore the environment during their lifetime.

The chemotactical strategy of E. coli can be summarized as
follows (Passino, 2002):

If a bacterium finds a neutral environment or an environment
without gradients, it alternately tumbles and swims.
If a bacterium finds a nutrient gradient, the bacterium spend
more time swimming and less time tumbling, so the directions
of movement are ‘‘biased’’ toward increasing nutrient gradi-
ents.
If a bacterium finds a negative gradient or noxious substances,
it swims to better environments or run away from dangerous
places.

4. Bacterial chemotaxis as optimization process

Chemotaxis is a strategy of movements optimized by nature.
The chemotactical behavior of bacteria as an optimization process
was modeled for the first time by Bremermann (1974) in the early
1970s. Two decades later, was proposed an algorithm based on
Bremmerman’s work and was applied to maximize a profit
function for fed-batch bioreactors (Montague and Wardb, 1994).
Also inspired by Bremmerman’s work, Müller et al. (2002)
developed an algorithm and applied it to the solution of inverse
airfoil design.

In 2002, a new optimization algorithm based on foraging
behavior of bacteria was introduced by Passino (2002). This novel
algorithm which is known as bacterial foraging optimization
algorithm (BFOA), considers not only the chemotactical strategy
but also other stages of bacterial foraging behavior as swarming,
reproduction and elimination and dispersal; besides communica-
tion between bacteria acquires great influence on the entire
process, getting closer to the concept that foraging is a
phenomenon of a bacterial colony rather than an individual
behavior. In subsequent publications of Passino with other
authors (Liu and Passino, 2002; Gazi and Passino, 2002; Passino,
2005), have been made tests of convergence and stability analysis
of this technique. Since its initial publication but especially in the
last 3 years, new modified versions of BFOA have been proposed
(De Castro and Von Zuben, 2004; Tang and Wu, 2006; Biswas,
2007; Chen, 2007); also the original algorithm and some of the
modified versions have been successfully implemented to solve
various kinds of engineering problems. In Mishra (2005) it is
presented as an application for harmonic estimation problem in
power systems; in Kim and Cho (2006) the algorithm is used for
tuning the PID controller of an AVR; an optimal power flow
solution is proposed in Li et al. (2007); in Wu et al. (2007) it is
shown as an application of job shop scheduling benchmark
problems; in Lin et al. (2007) the parameters of membership
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