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The underlying objective of this study is to show how fuzzy sets (and information granules in general)

and grammatical inference play an interdependent role in information granularization and knowledge-

based problem characterization. The bottom-up organization of the material starts with a concept and

selected techniques of data compactification which involves information granulation and gives rise to

higher-order constructs (type-2 fuzzy sets). The detailed algorithmic investigations are provided.

In the sequel, we focus on Computing with Words (CW), which in this context is treated as a general

paradigm of processing information granules. We elaborate on a role of randomization and offer a

detailed example illustrating the essence of the granular constructs along with the grammatical aspects

of the processing.

& 2009 Elsevier Ltd. All rights reserved.

1. Introduction and problem formulation

Assessing quality of available data, especially in situations
where they are significantly scattered and of high dimensionality
becomes crucial for their further usage in a variety of reasoning
schemes. The nature of data and their distribution implies diff-
erent levels of quality of results of inference.

The data usually come with some redundancy, which is
detrimental to most of the processing in which they are involved.
It could be also inconvenient to interpret them considering the
size of the data set itself. Taking those factors into consideration, it
could be of interest to represent the whole data set D by its
selected subset of elements F, where FCD. While there is a wealth
of approaches that exist today, most of them are concerned with
some form of averaging meaning that at the end we come up with
the elements, which have never existed in the original data
meaning that they usually may not have any straightforward
interpretation. In contrast, if F is a subset of D, the interpretability
does not cause difficulties. It is also evident that the choice of the
elements of F, as well as their number, implies the quality of
representation of original data D. This set being treated as a
‘‘condensation’’ of D can be a result of a certain optimization. The
cardinality of F, which is far lower that the cardinality of D itself

helps alleviate the two problems we identified at the very
beginning.

Let us start with a formal presentation of the problem, where
we also introduce all required notation. We are provided with a
collection of data D=(xk, yk), k=1, 2 ,y, N forming an experi-
mental evidence coming from a certain process or phenomenon.
We assume that xk and yk are vectors in Rn and Rm, respectively.
The semantics of xk and yk depends on the setting of the problem
(and will be exemplified through several examples); in general we
can regard yk to be a certain indicator (output) associated with the
given xk.

Graphically, we can portray the crux of the problem in Fig. 1.
The essence of the optimization criterion guiding the construction
of F is to represent D by the elements of F to the greatest extent;
we will elaborate on the details of the objective function later on.
Each element of D is expressed via a certain relationship whose
‘‘c’’ arguments (xi1, xi2 ,y, xic) are elements of F, see also Fig. 1.
More specifically, we can describe it concisely as

ŷk ¼Uðxk;xi1;xi2;:::;xicÞ ð1Þ

where kAN–I and we strive for the relationship ŷk ¼ yk, which can
be achieved through some optimization of the mapping itself as
well as by way in which F has been constructed.

As the form of the mapping stipulates, we are concerned with a
certain method for data compactification.

In the study, we use some additional notation: let N stand for
the set of indexes, N={1, 2 ,y, N}, while I be a subset of ‘‘c’’
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indexes of N, ICN, I={i1, i2 ,y, ic} used to denote the elements
of F.

The structure of the data as presented above is suitable in a
variety of contexts:

� Decision-making processes. For instance, in assessing terrorist
threats we are provided (on the basis of some previous cases or
scenarios), a collection of characterizations of a threat situation
(xk) and the associated actions along with their preference
(relevance) yk, say yk=[0.8 0.4 0.05] with actions such as
‘‘enhance surveillance’’, ‘‘deploy patrol’’, or ‘‘issue warning’’.
� Prediction. Here xk is concerned with a vector of variables

describing a certain process at a given moment in time, while
yk is a vector of the same variables with the values assumed in
the consecutive moment. The concept can be used in various
schemes of learning—including neural networks (Harvey,
1994).
� Classification. In this case, xk is viewed as a vector of features in

the n-dimensional space, while yk is a Boolean vector of class
allocation; in particular for a two-class problem, yk assumes a
single Boolean value.

It is worth noting that a well-known scheme for Case-Based
Reasoning (CBR) (Duda et al., 2001); (Rubin, 1992) emerges as one
of the general alternatives, which takes advantage of the format of
the data used here. In general, CBR embraces four major
processes: (a) retrieving cases from memory that are relevant to
a target problem; (b) mapping the solution from the closest (the
most similar) retrieved case to the target problem; (c) possible
modification of the solution (its adaptation to the target problem);
and (d) retaining the solution as a new case in memory. This study
shows that the successive phases of processing can be realized
and the reasoning results quantified in terms of information
granules.

One of the problems addressed by this paper is not only that of
quantitative granularization and its attendant mechanics and
algorithmic details, but that of qualitative granularization and
fuzzification (or computing with words as it is more commonly
known in the literature). A related problem, addressed herein, has
to do with knowledge imbued in specific domains versus
techniques for general domains, which may be NP-hard. It will
be shown that the computer as a device for carrying out massive
(and concurrent) searches underpins both and that computing
with words can be underpinned by transformational grammars. A
specific example relating to the design of a refrigeration device
serves to illustrate the point. While 2-level or w-grammars (i.e., a

pair of CFGs, where one generates the productions used by its
companion) are of type-0 generality, the exposition shows that
such grammars may transform—not merely write the productions
of another grammar in a manner that is similar to the duality
between data and program found in common LISP.

The paper is structured in a bottom-up manner. We start with
the formulation of the optimization problem (Section 2); here we
clearly identify the main phases of the process of optimization by
distinguishing between parametric and structural enhancements.
The structural aspect of optimization is handled by running one of
the techniques of evolutionary optimization, namely Particle
Swarm Optimization (PSO). The pertinent discussion is covered
in Section 3. Section 4 is concerned with the development of
higher-order information granules, which are inherently asso-
ciated with the essence of the compactification process. We show
that, on a conceptual level, the resulting constructs become
interval-valued fuzzy sets or type-2 fuzzy sets, in a general
setting. Illustrative experiments are reported in Section 6. While
those sections are of more detailed nature, in the sequel we build
upon these findings and focus on Computing with Words (CW) as
a general paradigm of processing information granules. Here we
underline the role of randomization as being inherent to the
essence of the CW processing. A detailed design example is
covered in Section 7.

2. The optimization process

Proceeding with the formulation of the problem, there are two
essential design tasks, that is (a) determination of F and (b)
formation of the prediction (estimation) mechanism of the output
part associated with xkAF. We start in a bottom-up fashion
considering (b) and assuming that at this phase the set F has been
already determined.

2.1. Reconstruction and its underlying optimization

In the reconstruction procedure, our intent is to express
(predict) the conclusion part associated with xkAF in such a way
that this prediction yk is made as close as possible to yk. Intuitively
yk can be expressed on a basis of what is available to us that is
yiAF. A general view can be expressed in the form of the following
aggregation:

ŷk ¼
X
iA I

uiðxkÞyi ð2Þ

where ui(xk) is sought as a level of activation, closeness, proximity,
or relevance of xkAD–F and the ith element of F. The closer the
two elements are, the higher the value of ui(xk) is. In some sense,
ui(xk) can be treated as a receptive field constricted around xi

capturing the influence xi has on its neighborhood. The closeness
is quantified through some distance and here we may benefit
from a variety of ways in which the distance could be expressed.
In addition to the commonly encountered distance functions, one
can also consider those based on tensor representation of the
space, cf. (Dodson and Poston, 1997). The optimization of the
receptive field comes from the following formulation of the
optimization problem:

V ¼
X
iA I

up
i ðxkÞ99xk � xi99

2

Min V with respect to xiAI ð3Þ

where we assume that ui(xk)A[0,1] and as usual require that these
values sum to 1.

D F

Fig. 1. Compactification of data: from original data D to its compact representation

F shown is a way in which elements of D–F are represented by the content of F.
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