
Engineering Applications of Artificial Intelligence 19 (2006) 501–510

Multi-objective genetic algorithms:
A way to improve the convergence rate
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Abstract

Multi-objective optimization is generally a time consuming step of the design process. In this paper, a Pareto based multi-objective

genetic algorithm is proposed, which enables a faster convergence without degrading the estimated set of solutions. Indeed, the

population diversity is correctly conserved during the optimization process; moreover, the solutions belonging to the frontier are equally

distributed along the frontier. This improvement is due to an extension function based on a natural phenomenon, which is similar to a

cyclical epidemic which happens every N generations (eN-MOGA). The use of this function enables a faster convergence of the algorithm

by reducing the necessary number of generations.
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1. Introduction

Nowadays there is a trend, notably in the industry,
towards complex products which span over several
engineering problems and disciplines. Actually, besides
the traditional economic point of view, more recent
industrial requirements, such as robustness and perfor-
mance of the design, have become an important character-
istic of the optimization process. In this context, real-world
engineering design problems involve simultaneous optimi-
zations of several objectives. At the beginning of the design
process the set of objectives is unclear and the designer has
to define them as precisely as possible. Often, these
objectives are conflicting.

Since the 1980s computational computer capabilities
have increased. Modelization softwares have benefited
from that fact and are now able to perform complex and
precise simulations. Conversely, they have simultaneously
become more and more time consuming. As an example,
one can cite simulations performed in fields like aero-

nautics, hydrodynamics (fluid simulation) and cars crash-
ing which use finite element models with huge numbers of
elements. Because the product ‘‘time to market’’ tends to be
minimized, computation time of optimization techniques,
like any other time consuming steps of the design process,
has become an important economic criterion in the whole
project.
In this context, the duration of the optimization step has

to stay as reduced as possible in order not to become
appalling with regard to the total time of the project in
which it takes part. This fact appears more important
insofar as the preparation time of the optimization
problem is often long. At the present time, several
industrial domains such as ‘‘real time control’’ which
require extremely fast optimization techniques cannot use
optimization techniques based on genetic algorithms (GAs)
because of this computing time.
In order to shorten this time—which can be approached

as the product of the number of evaluations by the function
evaluation time—we have two solutions. The first one
consists in reducing the function evaluation time: one way
to reach this goal is the use of response surfaces, which
gives an approximation of the function. The second

ARTICLE IN PRESS

www.elsevier.com/locate/engappai

0952-1976/$ - see front matter r 2006 Elsevier Ltd. All rights reserved.

doi:10.1016/j.engappai.2006.01.010

�Corresponding author. Tel.: +332 40 37 69 50; fax: +33 2 40 37 69 30.

E-mail address: philippe.depince@irccyn.ec-nantes.fr (Ph. Dépincé).
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possibility aims at reducing the number of evaluations
required to reach the optimized solution.

As opposed to single-objective optimization problems
which accept one single optimum solution, multi-objective
optimization problems propose a set of alternative
optimum solutions named the Pareto frontier. In order to
solve multi-objective problems, the designer can choose
between two ideologically opposed sets of techniques. The
first set contains single-objective optimization techniques
which consist in building a function which aggregates all
the objectives of the problem in a single function which is
supposed to represent designer’s preferences information.
Such techniques provide a unique solution which is
strongly linked with the aggregation function. Conse-
quently, single-objective techniques can be considered as ‘‘a
priori’’ methodologies. The second set contains multi-
objective optimization techniques which provide a set of
alternative solutions. They are based on an ‘‘a posteriori’’
articulation of preference information in order to make a
choice within a set of optimum solutions. In many cases,
multiple objective problems are aggregated into one single
overall objective function (OF) (Fig. 1). Some optimization
techniques available in the operational research field enable
the designer to consider each objective separately. Two
kinds of optimization methods exist: derivative and non-
derivative. The second ones are more suitable for general
engineering design problems that (a) do not need any
derivatives of the OF and (b) are more likely to explore the
whole design space. Since the end of the 1980s, GAs, a non-
gradient based method, have grown in popularity (Gold-
berg, 1989; Colette et al., 2000). This method can also take
into account problems with constraints (Sarker et al.,
2001). As they seem robust enough to identify multiple
optimal solutions and handle multi-modal functions we
have decided to use them as an optimization method.
Therefore, this paper focusses on multi-objective genetic
algorithms (MOGA) and more specifically on a methodol-
ogy to reduce the number of evaluations of OF and
therefore improve the convergence speed.

The present work is structured into four sections. The
first section is concerned with multi-objective problems and

the Pareto representation of their solutions. The second
introduces GA methodologies. The third one describes the
improvement we propose in order to enable a faster
convergence of the algorithm and an academic example
based on the well-known Deb’s functions (Deb, 1999).
Finally, the last section presents an application on a
classical engineering problem: the design of a plane frame
structure.

2. Multi-objective problems: definition and formulation

2.1. General definition of a multi-objective problem

A multi-objective optimization can be defined as the
problem of finding a set of design variables (DV) which
optimizes a set of OF and simultaneously satisfies a set of
constraint functions. A multi-objective optimization pro-
blem can be expressed as follows:
Find DV set:

x ¼ ðx1; x2; . . . ; xnÞ
T
2 ðDVSÞ, (1)

which minimizes OF:

fðxÞ ¼ ðf 1ðxÞ; f 2ðxÞ; . . . ; f kðxÞÞ
T
2 ðOFSÞ (2)

and simultaneously satisfies constraints:

hiðxÞ ¼ 0; i 2 ½1; . . . ; qh� (equality constraints),

giðxÞp0; i 2 ½1; . . . ; qg� (inequality constraints),

(
(3)

where:

� n is the number of DV (optimization parameters) which
belong to the design variables space (DVS);
� k is the number of OF to be optimized; OF are included

in the objective function space (OFS). The space of DV
can contain both discrete and continuous variables;
� qh is the number of equality constraint functions;
� qg is the number of inequality constraint functions.

2.2. Pareto frontier concept

If we note f �1; f
�
2; . . . ; f

�
k as the individual minima of each

respective OF, the utopian solution, f� ¼ ðf �1; f
�
2; . . . ; f

�
kÞ, is

the best theoretical solution which simultaneously mini-
mizes all the objectives. Nevertheless, this utopian solution
is rarely feasible because of the existence of constraints.
Often f� does not belong to the OFS and we use the Pareto
frontier to define a set of solutions instead of the optimum
solution (Fig. 2). The Pareto-optimality is defined as a set,
FP, where every element, fP;i, is a solution of the
problem—defined by Eqs. (1)–(3)—for which no other
solutions can be better with regard to all the OF. A
solution in a Pareto-optimal set cannot be considered
better than the others within the set of solutions without
including preference information.
For a minimization problem, considering two solution

vectors x and y, one says that x is contained in the Pareto
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Fig. 1. Single-objective optimization methods vs multi-objective.
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