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Abstract

In this paper we present a successful application of genetic algorithms to the registration of uncalibrated optical images to a 3D surface

model. The problem is to find the projection matrices corresponding to the images in order to project the texture on the surface as

precisely as possible. Recently, we have proposed a novel method that generalises the photo-consistency approach by Clarkson et al. to

the case of uncalibrated cameras by using a genetic algorithm. In previous studies we focus on the computer vision aspects of the method,

while here we analyse the genetic part. In particular, we use semi-synthetic data to study the performance of different GAs and various

types of selector, mutation and crossover. New experimental results on real data are also presented to demonstrate the efficiency of the

method.
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1. Introduction

The problem of building and visualising photorealistic
3D models of real-world objects has become an important
topic of computer vision during the last years. There are
thousands of cultural heritage objects around the world in
the danger of being hurt or destroyed. Ambitious projects
have been started to preserve these objects by digitalising
them. Such projects are: the Michelangelo Project (Levoy
et al., 2000), the Pieta Project (Bernardini et al., 2002) and
the Great Buddha Project (Ikeuchi et al., 2003).

Photorealistic 3D models must have precise geometry as
well as detailed texture on the surface. Active and passive
methods for creating such models are discussed in Yemez
and Schmitt (2004). The methods are based on different
principles. They use different techniques to reconstruct the
object surface, acquire its texture and map the texture onto

the surface. The geometry can be measured by various
methods of computer vision. When precise measurements
are needed, laser scanners are often used. However, most of
laser scanners do not provide texture and colour informa-
tion. Even when they do, the data provided are not
accurate enough. (See Yemez and Schmitt, 2004 for a
detailed discussion.)
Whatever the sources of the geometric and the textural

information are, the problem of data fusion, or registra-
tion, is to be addressed. In this paper we consider the case
when the two sources are independent. We approach the
problem of combining precise geometry with high quality
images by using genetic algorithms.
A number of approaches to the above registration

problem have been proposed. In Jankó and Chetverikov
(2004a,b) we introduced a novel method based on photo-
consistency. The novelty of our method consists in using
uncalibrated cameras—in contrast to Clarkson et al. (2001)
who need a calibrated setup—and applying a genetic
algorithm. Below we describe the problem of photo-
consistency based registration and give a summary of our
approach (Jankó and Chetverikov, 2004a,b).
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The mathematical formulation of the registration
problem is the following. Two input images, I1 and I2,
and a 3D model are given. They represent the same object.
(See an example in Fig. 1.) The only assumptions about the
environment are that the lighting conditions are fixed and
the cameras have identical sensitivity.2 All other camera
parameters may differ and are unknown. The 3D model
consists of a 3D point set P and a set of normal vectors
assigned to the points. P is obtained by a hand-held 3D
scanner and then triangulated by the robust algorithm of
Kós (2001). This algorithm provides the normal vectors as
well.

To project the object surface to the image plane, the
finite projective camera model (Hartley and Zisserman,
2000) is used: u ’ PX, where u is an image point, P the
3� 4 projection matrix and X a surface point (’means that
the projection is defined up to an unknown scale).

The task of registration is to determine the precise
projection matrices, P1 and P2, for both images. The
projection matrix P has 12 elements but only 11 degrees of
freedom, since it is up to a scale factor. We denote the
collection of the 11 unknown parameters by p, which
represents the projection matrix P as an 11-dimensional
parameter vector.

Values of p1 and p2 are sought such that the images are
consistent in the sense that the corresponding points—
different projections of the same 3D point—have the same
colour value. Note that the precise mathematical definition
is valid only when the surface is Lambertian, that is, the
incoming light is reflected equally to every direction on the
surface. This is usually true for diffuse surfaces. The formal
definition is the following: We say that images I1 and I2 are
consistent by P1 and P2 (or p1 and p2) if for each X 2 P:
u1 ¼ P1X, u2 ¼ P2X and I1ðu1Þ ¼ I2ðu2Þ. (Here I iðuiÞ is the
colour value in point ui of image I i.) This type of
consistency is called photo-consistency (Clarkson et al.,
2001; Kutulakos and Seitz, 1993).

The photo-consistency holds for accurate estimates for
p1 and p2. Inversely, misregistered projection matrices
mean much less photo-consistent images. The cost function
introduced in Jankó and Chetverikov (2004a) is the

following:

Cfðp1; p2Þ ¼
1

jPj

X

X2P

kI1ðP1XÞ � I2ðP2XÞk
2. (1)

Here f stands for photo-inconsistency while jPj is the
number of points in P. Difference of the colour values
kI1 � I2k can be defined by a number of different colour
models. (For details see Jankó and Chetverikov, 2004b.)
Finding the minimum of the cost function (1) over p1 and
p2 yields estimates for the projection matrices.
The cost function (1) is robustified against occlusion and

wrong measurements. Occluded points are eliminated by
using the surface normals, and the outliers by rejecting
a certain amount of the smallest and largest squares
(a-trimmed mean technique).
In spite of the simplicity of the cost function Cfðp1; p2Þ,

finding the minimum is a difficult task. Due to the 22-
dimensional parameter space and the unpredictable shape
of Cfðp1; p2Þ, the standard local nonlinear minimisation
techniques failed to provide reliable results. We have tested
a number of widely used optimisation methods: Newton-
like methods, the Broyden–Fletcher–Goldfarb–Shanno
(BFGS) variable metric method and the Levenberg–
Marquardt algorithm. Experiments have shown that local
search techniques terminate every time in local minima
quite far from the expected global optimum.
A global nonlinear optimisation technique has also been

tested. However, the stochastic optimisation method by
Csendes (1988) did not yield acceptable results either. The
randomness of a stochastic method is excessive, and it
does not save nearly good solutions. In contrast, genetic
algorithms preserve the most promising results and try to
improve them. (Running a GA without elitism yields
unstable and imprecise results, similarly to the stochastic
optimisation.)
The methods mentioned above and other popular

techniques, such as simulated annealing and tabu
search process one single solution. In addition to perform-
ing a local search, simulated annealing and tabu
search have specific built-in mechanisms to escape local
optima. In contrast, genetic algorithms work on a
population of potential solutions, which compete for
survival. The competition is what makes GAs essentially
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Fig. 1. The Shell dataset.

2The latter can be easily achieved if the images are taken by the same

camera.
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