
TIṬAL – Asynchronous multiplayer shooter with procedurally generated
mapsq,qq

Bhojan Anand ⇑, Wong Hong Wei
School of Computing, National University of Singapore, Singapore

a r t i c l e i n f o

Article history:
Received 1 March 2015
Revised 21 January 2016
Accepted 19 February 2016
Available online 7 March 2016

Keywords:
Game
TIṬAL
Prodecural content generation
Game map generation
Bots
Artificial intelligence

a b s t r a c t

Would it be possible to bring the promise of unlimited re-playability typically reserved for Roguelike
games to competitive multiplayer shooters? This paper tries to address this issue by proposing a novel
method to dynamically generate maps at run-time almost as soon as players press the Play button, while
ensuring the features what players would expect from the genre. The procedures are simple and practi-
cally feasible to be employed in actual computer games. In addition, the work experiments the possibility
of incorporating asynchronous game-play element into a multiplayer shooter with human imitating bots
where the players can let their bot/avatar replace them when they are not around. The algorithms are
implemented and evaluated with a playable game. The evaluations prove that playable 3D dynamic maps
can be generated in order of seconds using game context data to initialise the parameters of the algo-
rithm. The paper also shows that asynchronous game-play element is a possible feature for consideration
in next generation multiplayer shooters.

� 2016 Elsevier B.V. All rights reserved.

1. Introduction

This paper demonstrates a novel method for procedurally gen-
erating dynamic maps at run-time at the click of the ‘Play’ button
using game context data and experiments the feasibility of bring-
ing asynchronous game-play element in next generation multi-
player shooters. We have created an experimental game entitled
TIṬAL, a Multiplayer Shooter in the form of a First-Person Shooter
(FPS) with novel approaches in the design of procedural maps
and human-imitating bots.

We limit our scope to the game mode Capture and Hold, pop-
ularised in games like Killzone [1]. Every player belongs to one of 2
teams. Littered around the map are flags that are captured by plac-
ing players in close proximity. A captured flag (can be recaptured)
lowers the team points for the opposing team continuously. A team
point of 0 signals the victory of the opposing team. To win, teams
have to actively defend and pursue flags.

1.1. Procedural content generation

Procedural Content Generation (PCG) is the use of algorithmic
means to create content [2,3] dynamically during run-time. Instead
of trekking the same grounds which gets stale with time, PCG pro-
mises a more novel experience every playthrough. PCG was uti-
lised in games as early as 1978. A notable example is Rogue [4,5]
which spawns a new genre known as Roguelikes. Core features
include randomly generated levels, item locations and so on. PCG’s
influence extends to racing games like Gran Turismo 5, which pro-
cedurally generates its tracks [6]. First Person Shooter (FPS) Border-
lands series procedurally generates weapons [7].

1.2. Multiplayer shooter

We believe that an exception to PCG lies with environments/
maps for multiplayer shooters such as Battlefield [8], which
remains one of the most popular genres to date [9].

The reader should note the difference between a multiplayer
and a standard shooter, which often follows an approximately lin-
ear path. The competitive nature of multiplayer shooters brings
additional challenge of ensuring fairness through the positioning
of strategic points. Moreover, players typically have more freedom
to move around the map. It is for these reasons the designers often
take a different approach to craft multiplayer maps.

http://dx.doi.org/10.1016/j.entcom.2016.02.002
1875-9521/� 2016 Elsevier B.V. All rights reserved.

q This paper has been recommended for acceptance by Nikitas Marinos Sgouros.
qq This paper is part of the virtual special issue on ‘‘Selected Papers from the 2014
International Conference on Entertainment Computing”, edited by Dr. Nikitas
Marinos Sgouros and Dr. Matthias Rauterberg.
⇑ Corresponding author.

E-mail addresses: banand@comp.nus.edu.sg (A. Bhojan), wei@nus.edu.sg
(H.W. Wong).

URL: http://www.comp.nus.edu.sg/~bhojan (A. Bhojan).

Entertainment Computing 16 (2016) 81–93

Contents lists available at ScienceDirect

Entertainment Computing

journal homepage: ees .e lsevier .com/entcom

http://crossmark.crossref.org/dialog/?doi=10.1016/j.entcom.2016.02.002&domain=pdf
http://dx.doi.org/10.1016/j.entcom.2016.02.002
mailto:banand@comp.nus.edu.sg
mailto:wei@nus.edu.sg
http://dx.doi.org/10.1016/j.entcom.2016.02.002
http://www.sciencedirect.com/science/journal/18759521
http://ees.elsevier.com/entcom


In this paper, we present a novel method that uses carefully
selected game context data to generate dynamic maps almost as
soon as the player press the ‘Play’ button, without compromising
the expected features of a good multiplayer shooter environment.
The method is simple, practically feasible and we have imple-
mented and evaluated it with the test game. We call our method
as ‘game context aware dynamic map generation’ method.

1.3. Human imitating bot

Recently, we are exposed to the concept of asynchronous multi-
player. Unlike games which demands players to play simultane-
ously, asynchronous multiplayer games can be played at any
time. In Draw Something [10], the other player does not need to
respond instantly in every round.

TIṬAL experiments with the possibility of incorporating such an
element into a multiplayer shooter. To allow this, the player can
play against a bot that imitates the behaviour of a teammate, sim-
ilar to Forza Motorstorm [11].

We also present a method for creating bots that take after the
behaviour of a player. In contrast to previous methods that records
huge data containing movement and action patterns to mimic the
behaviour, we learn and store only the key parameters that are
meaningful for the given game genre to mimic the behaviours in
key decision points of the game. By using such game context aware
learning, the storage and computation requirements are signifi-
cantly reduced while producing human like behaviour. Like in
PCG, the method is practically feasible and has been implemented
in a multiplayer shooter and evaluated with a group of users.

1.4. Overview

In the rest of this paper, we first discuss the motivations for this
work in Section 2 and then related works in Section 3. In Section 4
we state the design goals of our map generation method before
describing how it is achieved in Section 5. We then explain the
design of the human imitating bots in Section 6. Implementation,
results and evaluations are described in Sections 7–9 respectively.
Finally, we discuss the limitations and future works in Section 10
before concluding with Section 11.

2. Motivation

In this work, we are attempting to automatically create play-
able, balanced (fair) and interesting maps for multiplayer shooters,
with a novel approach built using Search-based PCG [2]. While PCG
is used by some multiplayer shooter game designers, who would
procedurally generate maps and thenmanually tweak them to ship
with the final product, our goal is to remove the human interven-
tion completely. This means that the generation should be com-
pleted within a span of seconds, or else the patience of the
player could wear thin. If we are successful, the development time
and cost needed to create maps for similar games could be drasti-
cally reduced. The result would be increased longevity that stems
from the near limitless amount of maps for players to play in.

We also aim to create Human Imitating Bots to incorporate
asynchronous gameplay to a new genre. Unlike most works which
aims to create human-like behaviours using a huge repository of
player’s play throughs, we hope to imitate the behaviour of a single
player and apply it to any map. Its success could bring about some-
thing fresh, allowing players to create a ‘doppelganger’ of them-
selves and watching it climb the ranks as it compete with others.
It also reduces the time commitment players required for such
games.

3. Related work

3.1. Procedural generation of map

Güttler and Johansson [11] identified basic spatial properties of
multiplayer FPSes and proposes heuristics for better level design.
In addition, the insights provided by industry leaders on design
of multiplayer games [12–14] assist the formulation of our design
goals.

Search-based PCG (SBPCG), an approach to PCG, was introduced
by Togelius et al. [2]. We will be employing a similar approach in
our solution.

Togelius et al. also manages to procedurally generate tracks for
a racer [15] and maps for Starcraft [16]. In both cases, SBPCG is
used with a simulation-based fitness function. Kerssemakers
et al. [17] introduces a procedural PCG generator to generalise
PCG with the use of a simulation-based fitness function. However,
the use of simulation-based fitness function is not suitable for our
goals, due to the time it takes to create a map is long and it is not
suitable for practical implementations due to the strict real time
requirements imposed by the games and game players.

Yeh et al. [18] presents the Markov chain Monte Carlo (MCMC)
algorithm to create open world areas which are relatively easy to
create when compared to complex closed area maps which basi-
cally represent big buildings. Michael et al. [19] proposes a method
of tiling entitledWang Tiles for image and texture generation. Mer-
rell et al. [20] identifies furniture design guidelines for indoor areas
and proposes ways to suggest layouts that fit those guidelines.
Similarly, a method for constructing concrete-based buildings is
introduced by Liu et al. [21]. However, their focus is only on gener-
ating components for the game map, but not the entire map.

Work done by Cardamone et al. [22] to evolve interesting maps
for a FPS leveraging on SBPCG is a great starting point. However,
work needs to be done to ensure that the map can be generated
within seconds. Moreover, the maps that are generated are seem-
ingly low on navigability and aesthetics, which are basic features of
any good multiplayer game. In contrast, navigability and aesthetics
are part of our design goals.

3.2. Human imitating bot

The work by Ortega et al. [23] introduces us to imitating human
play styles in Super Mario Bros.

Thurauet al. [24] createdanAI Bot that captures themovementof
a human player in a FPS. It relies heavily on how players move and
then replicating it in the same map. For our game, we also aims to
createmaps dynamically Therefore,wewant to bring this behaviour
to any maps even if part of the accuracy has to be sacrificed. More-
over, it relies on massive existing player data to craft them, which
differs from our goal of obtaining a good model of a single player.

Verweij [25] shows us techniques in implementing multiplayer
bots which drives the design of our AI. The paper by Waveren [26]
details the Quake III Arena Bot which is mostly state-based and
therefore may lack the nuance needed for mimicking human
behaviour.

Schrum et al. [27,28] introduces us to the UT2 bot for Unreal
Tournament 2004, which maintains life-likeness after evolving
with a set of human play traces but is not exclusive to a single
human player.

4. Map design goals

We describe what we want to achieve by identifying elements
of interesting maps (of multiplayer shooters) so that they can be
incorporated into our design.

82 A. Bhojan, H.W. Wong / Entertainment Computing 16 (2016) 81–93



Download English Version:

https://daneshyari.com/en/article/381794

Download Persian Version:

https://daneshyari.com/article/381794

Daneshyari.com

https://daneshyari.com/en/article/381794
https://daneshyari.com/article/381794
https://daneshyari.com

