
Planar character animation using genetic algorithms and GPU parallel
computing q

Benjamin Kenwright
Edinburgh Napier University, United Kingdom

a r t i c l e i n f o

Article history:
Received 8 March 2014
Revised 23 September 2014
Accepted 24 September 2014
Available online 5 November 2014

Keywords:
Animation
Control
Interactive
Graphical processing unit (GPU)
Computer games
Genetic

a b s t r a c t

The emergence of evolving search techniques (e.g., genetic algorithms) has paved the way for innovative
character animation solutions. For example, generating human movements without key-frame data.
Instead character animations can be created using biologically inspired algorithms in conjunction with
physics-based systems. While the development of highly parallel processors, such as the graphical pro-
cessing unit (GPU), has opened the door to performance accelerated techniques allowing us to solve com-
plex physical simulations in reasonable time frames. The combined acceleration techniques in
conjunction with sophisticated planning and control methodologies enable us to synthesize ever more
realistic characters that go beyond pre-recorded ragdolls towards more self-driven problem solving ava-
tars. While traditional data-driven applications of physics within interactive environments have largely
been confined to producing puppets and rocks, we explore a constrained autonomous procedural
approach. The core difficulty is that simulating an animated character is easy, while controlling one is
more complex. Since the control problem is not confined to human type models, e.g., creatures with mul-
tiple legs, such as dogs and spiders, ideally there would be a way of producing motions for arbitrary phys-
ically simulated agents. This paper focuses on evolutionary genetic algorithms, compared to the
traditional data-driven approach. We demonstrate generic evolutionary techniques that emulate physi-
cally-plausible and life-like animations for a wide range of articulated creatures in dynamic environ-
ments. We help address the computational bottleneck of the genetic algorithms by applying the
method to a massively parallel computational environments, such as, the graphical processing unit
(GPU).

� 2014 Elsevier B.V. All rights reserved.

1. Introduction

1.1. Preface

How do creatures move in the real-world? For example, how
do we as humans move? Can you explain it? While we are able
to simulate dynamic rigid body worlds (e.g., by means of unintel-
ligent solid objects moving due to forces and collisions) in interac-
tive virtual environments, such as video-games and training
simulations, the control of complex physics-based character
systems is an active area of research. The traditional approach
of creating character animations in interactive worlds is through
data-driven solutions (i.e., pre-recorded animations) that are
blended and applied to rigid body structures. Alternatively, a
number of approximate procedural approaches are available, that

include using low-dimensional systems (e.g., inverted pendulum
or optimization search algorithms). These low-dimensional mod-
els allow the animation to run in real-time while mimicking the
fundamental dynamic principles of real-world characters (e.g.,
balanced stepping logic). Hence, creating animated character ani-
mations using procedural techniques is highly challenging, inter-
esting, and important.

1.2. Motivation

Static poses (i.e., motion-less poses) can be used to control pro-
portional-derivative controllers. However, in dynamic environ-
ments, where the character is in motion (e.g., running and
stepping), the timing information might not correlate between
the aim and target. For example, if a character is taking a step,
the character’s foot will miss the target, and in interactive environ-
ments, such as games, this can be unacceptable. Hence, we need to
constantly create poses on-the-fly that can accomplish diverse
tasks while being able to adapt to the environment around them

http://dx.doi.org/10.1016/j.entcom.2014.09.003
1875-9521/� 2014 Elsevier B.V. All rights reserved.

q This paper has been recommended for acceptance by Ryohei Nakatsu. (Where
Ryohei Nakatsu is the name of the Handling Editor).

E-mail address: b.kenwright@napier.ac.uk

Entertainment Computing 5 (2014) 285–294

Contents lists available at ScienceDirect

Entertainment Computing

journal homepage: ees .e lsevier .com/entcom

http://crossmark.crossref.org/dialog/?doi=10.1016/j.entcom.2014.09.003&domain=pdf
http://dx.doi.org/10.1016/j.entcom.2014.09.003
mailto:b.kenwright@napier.ac.uk
http://dx.doi.org/10.1016/j.entcom.2014.09.003
http://www.sciencedirect.com/science/journal/18759521
http://ees.elsevier.com/entcom


(e.g., changing terrain types, such as, slopes, bridges, and pot-
holes).

1.3. Challenges

The key challenges that make it difficult to reproduce physi-
cally-plausible life-like movements in ‘‘real-time’’ that mimic
real-world creatures are given below. We also point out where
an evolutionary genetic algorithm sits in relation to each problem.

� Realism: A particular character model gives rise to a large set
of possible motions with different styles. While the physics-
based system enforces the control laws, the genetic algorithm
has the challenging task of searching for poses that re-con-
struct and reproduce the intricate and agile movement we
observe in nature.

� High dimensions: Characters have a relatively high number of
degrees-of-freedom, making the search for the appropriate
control parameters hard. The search space can be vast and
non-continuous while containing multiple solutions. Although
single threaded genetic algorithms can cope with large search
spaces, the stringent demands make it impossible for interac-
tive applications or even performed in reasonable time-
frames.

� Underactuation: Dynamically simulated characters are difficult
to control because they have no direct control over their global
position and orientation. Even staying upright is a challenge
for large disturbances. In order to succeed, the genetic algo-
rithm control law must plan ahead to determine actions that
can stabilize the body (e.g., not just a static moment in time,
but will have to the run simulation forwards to predict how
the movement will evolve based on the physical constraints)
[9].

� Contacts: Characters are restricted to move within a certain
region of its three-dimensional environment, and these con-
straints are difficult to maintain in real-time control systems.
Furthermore, frequent ground contacts create a highly discon-
tinuous search space rendering most continuous controller
synthesizing methods ineffective at planning over longer time
horizons.

1.4. Contribution

The contributions of this paper are: (1) We introduce and dem-
onstrate a procedural approach for synthesizing the evolution of
artificial-life animations without data (e.g., key-frames) through
a genetic based search algorithm (i.e., an evolving survival of the
best approach). (2) We create physics-based character motions
that adapt and explore complex environments (e.g., we go beyond
flat terrain and include stairs and slopes). (3) We extend the tech-
nique to non-biped type avatars (e.g., creatures with multiple legs,
such as cats and snakes). (4) We explore performance improve-
ments through exploitation of massively parallel execution envi-
ronments, such as the graphical processing unit (GPU) for
evolving populations. (5) We discuss practical aspects, such as fit-
ness functions and controller models, for generating the joint con-
trol torques of the articulated character.

2. Related work

Evolving genetic algorithms have been used across multiple dis-
ciplines to solve a wide variety of problems (e.g., robotics, biome-
chanics, and computer animation). While there is a plethora of
exciting and interesting research in the area of procedural

animation, we review and compare essential research that is spe-
cifically related and has inspired this work.

2.1. Where did it all start?

The idea of using a population of solutions to solve practical
engineering optimization problems was considered several times
during the 1950’s and 1960’s [5]. The concept of a Genetic Algo-
rithm (GA) was coined by John Holland and his colleagues and stu-
dents at the University of Michigan in the 1970s [12]. However, GA
was originally popularized by one of John Holland’s students,
David Goldberg, who was able to solve a difficult problem involv-
ing the control of gas-pipeline transmission for his dissertation in
1980s [7].

2.2. Space–time constraints

Space–time constraints, originally proposed by Witkin and Kass
[17], allows an artist to specify how an animated figure should
move but not how to do it. This approach is very appealing in ani-
mation. Witkin and Kass [17] original space–time constraint
method generated kinematic motions that satisfied both high level
goals (e.g. jump from here to there) while appearing physically
plausible. Furthermore, the resulting motions exhibited many of
the principles of traditional animation (e.g., squash, stretch, fol-
low-through, and anticipation). Space–time constraints use
sequential quadratic programming (SQP) to optimize the kine-
matic positions of an articulated figure, using energy consumption
as an objective function that constraint the solution in order to
ensure that the motion is physically plausible. Unfortunately, this
method generates solutions that depend on an initial guess given
to the optimizer, which can unfortunately converge on a local min-
imum that creates a kinematic motions that appears unnatural. In
addition, it is by no means clear that energy is the best criteria to
optimize.

2.3. Automation

Other researchers proposed methods of automatically generat-
ing walking motion using search and optimization techniques
[16,10]. Both of which have demonstrated impressive results;
yielding physically plausible motions and automatically finding a
number of walking methods. However, the resulting motion had
high specialization (i.e. they made walking gaits, not general
motions), but low specificity (i.e. they both simply walked forward,
rather than having more specific instructions, like, walk to position
X). These methods were optimizing structures of fixed complexity
(a network of fixed topology and a stimulus response table, respec-
tively). We believe that this is a disadvantage compared to a repre-
sentation which may change its own complexity. We chose a
different representation, namely a mathematical description (com-
puter program) describing how the joint forces vary with time and
changes in the state of the simulation. We believe that this repre-
sentation offers many advantages, and is appropriately optimized
using the genetic algorithm technique.

2.4. Genetic algorithms

Karl Sims [13] used a genetic-like approach for evolving proce-
dural textures, where the fitness metric was human evaluation.
Later, Karl Sims also described the use of evolutionary program-
ming to design entire creatures [14], in which even the creature
topology was evolved, for example, walking and swimming. In con-
trast, our work deals with figures of fixed topology and geometric
structure, as one would expect for character animation.

286 B. Kenwright / Entertainment Computing 5 (2014) 285–294



Download English Version:

https://daneshyari.com/en/article/381826

Download Persian Version:

https://daneshyari.com/article/381826

Daneshyari.com

https://daneshyari.com/en/article/381826
https://daneshyari.com/article/381826
https://daneshyari.com

