
Investigating informative performance metrics for a multicore game
world server q

James Munro, Kofi Appiah, Patrick Dickinson ⇑
School of Computer Science, University of Lincoln, Lincoln LN6 7TS, UK

a r t i c l e i n f o

Article history:
Received 17 December 2012
Revised 14 August 2013
Accepted 26 October 2013
Available online 11 November 2013

Keywords:
Multi-core games server
Performance evaluation
Game server metrics

a b s t r a c t

Many real-time game world servers run on stand-alone PCs, such that user performance is bound to fairly
modest hardware configurations. Studies of multicore architectures to optimize such servers are sparse,
and evaluations typically involve the use of one or two arbitrary performance metrics. However, the
behavior of game servers is complex and the interpretation of metrics, particularly in the case of parallel
implementations, is not straightforward.

Our initial interest is in efficient load-balancing of multicore game engines. However, the focus of this
paper is on performance metrics: starting with proposed metrics from other works, we investigate their
effectiveness and inter-relationships, propose new variants, and discuss how they can be used in combi-
nation to gain a better understanding of actual performance.

The use of metrics to inform the design and optimization of game software has gained recent interest
from academics and practitioners alike: we conclude to show, by example, how server metrics can be
directly connected with game semantics, and used to predict the impact of game design changes on ser-
ver performance.

� 2014 Elsevier B.V. All rights reserved.

1. Introduction

Multiplayer games range from the technologically simple, to
sophisticated endeavors such as Massively Multiplayer Online
Role-playing Games (MMORPGs). The concept of a client–server
architecture is ubiquitous: in the case of MMORPGs, expansive envi-
ronments are hosted on bespoke server configurations which facil-
itate huge numbers of users. For example, by 2007 the game EVE
Online had recorded over one million unique players since its launch
in 2003 [1]. Whilst a significant amount of research has investigated
the use of distributed architectures to support large-scale game
servers (e.g., [2–8]), this type of server setup is exceptional.

Many games allow players to create their own stand-alone
ad-hoc servers which service smaller game worlds with tens rather
than thousands of players. These servers run on standard consumer
equipment, and performance is (unsurprisingly) closely bound to
processing power [9]. Single machine servers represent a major part
of the currently available multiplayer online gaming service, and
are common for first person shooters games which involve fast-
paced interactive gameplay and real-time simulation. Player expe-
rience for this game type is particularly sensitive to degradation in
performance, in the order of milliseconds [10,11], and so server

optimization represents an ongoing challenge for developers. It is
therefore surprising that relatively little work has been directed
at optimizing stand-alone servers to utilize the parallel processing
architecture of multicore CPUs. Game metrics have attracted recent
academic interest (e.g., [12,13]), and also interest from industry
where they are perceived as a valuable tool for design, balancing,
and optimization. As Abdelkhalek et al. note [9], benchmarking
methods for interactive game servers are driven by somewhat
different considerations from scientific processing: useful perfor-
mance evaluation should reflect user experience in some way.
Again, little work has yet considered suitable server-side metrics
for the analysis of real-time multicore game engines.

1.1. Motivation

The starting point for our work is an existing server design pro-
posed by Cordeiro et al. [14], implemented using id software’s
QuakeWorld game server. Cordeiro’s work uses spatial partitioning
to divide entity processing into discrete non-intersecting work
packages which can executed in parallel (details of the architecture
are given in Section 2.3). Our initial interest is in load balancing,
and optimizing the distribution of work packages across hardware
threads; however, a survey of current work in this area reveals that
the use of performance metrics is not standardized, making it dif-
ficult to compare algorithms. Moreover, a single metric is not in
itself entirely informative, and often leaves questions remaining

1875-9521/$ - see front matter � 2014 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.entcom.2013.10.001

q This paper has been recommended for acceptance by Minhua Eunice Ma.
⇑ Corresponding author. Tel.: +44 1522886946.

E-mail address: pdickinson@lincoln.ac.uk (P. Dickinson).

Entertainment Computing 5 (2014) 1–17

Contents lists available at ScienceDirect

Entertainment Computing

journal homepage: ees .e lsevier .com/entcom

http://crossmark.crossref.org/dialog/?doi=10.1016/j.entcom.2013.10.001&domain=pdf
http://dx.doi.org/10.1016/j.entcom.2013.10.001
mailto:pdickinson@lincoln.ac.uk
http://dx.doi.org/10.1016/j.entcom.2013.10.001
http://www.sciencedirect.com/science/journal/18759521
http://ees.elsevier.com/entcom


about the underlying processes. The measurement of performance
of a multicore server thus becomes our primary interest, such that
the motivations for our study are:

1. To investigate the relationship (if any) between currently
used server-side performance metrics.

2. To determine which metric, or set of metrics, provide the
most informative analysis of performance.

3. As a secondary motivation, we are interested in the
impact that the choice of load balancing algorithm has
on performance in Cordeiro et al.’s architecture: this pro-
vides a context for points 1 and 2.

As mentioned, useful performance evaluation should reflect
player experience in some way. In terms of perceived responsiveness,
experience is a function of several factors of which server perfor-
mance is just one. Others include data transmission latency, client-
side performance, and also game play context: for example, the
affects of latency on player experience have been well-studied (e.g.,
[11,15,16]). A proper analysis of perceived responsiveness encom-
passes all these factors, is context dependent, and lies outside the
scope of the work presented here. Our focus is specifically on identi-
fying meaningful comparators for multicore server architectures,
which may be used to quantify performance and independently opti-
mize design. Nevertheless, our metrics do relate directly to player
experience. For example, we will use server throughput, which is a
direct measure of the number of connected clients that can be pro-
cessed concurrently, and so has a direct effect on experience.

1.2. Contributions

Our study takes the form of a set of empirical investigations into
the performance of different simple load balancing strategies used
in conjunction with Cordeiro et al.’s QuakeWorld server [14]. These
experiments are primarily constructed to investigate the response
of different metrics. Building on our preliminary results, presented
in [17], the contributions of this paper are:

1. We evaluate the effectiveness of a range of server-side
metrics including frames per second, server throughput,
thread wait time, and accumulated thread work load.
We present conclusions concerning their inter-relation-
ships and effectiveness, and which are most useful in ana-
lyzing performance. A study of performance metrics in
the context of multicore game servers has not previously
been conducted, and is of immediate use to developers
working on stand-alone game server applications.

2. In relationship to Cordeiro et al.’s architecture [14], we
show by example how metrics can be used to estimate
the effect of game design changes on server performance.

3. We investigate the effects of different load balancing
algorithms on server performance. We use only simple
balancing techniques, but these are still able to character-
ize the importance of effective thread balancing in Corde-
iro et al.’s system. We further investigate how these
results scale across varying numbers of CPU cores, ranging
from one (serial) to six concurrent hardware threads,
using our metrics.

Whilst we use a specific architecture and game engine to con-
duct our experiments, our results are easily generalized. The pro-
posed metrics are low-level statistics which describe the
performance of workgroups processed on hardware threads: these
are thus independent of the workgroup allocation strategy, and
equally applicable to any multicore game server design. Further-
more, the lockless server design which we employ [14] is based

on the semantic constraints of objects moving in a physical simu-
lation. This design may therefore be transposed to any functionally
comparable game engine (e.g., first person shooter, or game which
simulates a physical world).

1.3. The structure of this paper

The rest of this paper is presented as follows. Section 2 reviews
the current literature regarding parallel and concurrent processing
architectures and metrics in game engines, specifically server-side,
and concludes with a description of the QuakeWorld server, and a
detailed description of the parallel implementation presented by
Cordeiro et al. Section 3 proceeds to describe our experimental set-
up, and is followed by Sections 4–7 which present our experimen-
tal work and discussions of performance metrics. We conclude
with a discussion of our results, and motivate some conclusions
regarding the use of server-side metrics, and load-balancing strat-
egies for stand-alone multicore game servers.

2. Background and related work

Whilst relatively little work has addressed the evaluation of
multicore game servers, there has been considerable wider interest
in the use of concurrent architectures to optimize game software.
Aspects of client-side processing have been addressed by Gildea
[18], who attempted to adapt the Quake III client to support paral-
lel execution (with limited success). He identified the difficulty in
reconstructing concurrent processing threads which access shared
memory. The use of GPUs to implement concurrent graphics pro-
cessing is well established. Their potential for use in non-graphical
processing in game engines has also been investigated [19–23].

Our interest lies specifically in the optimization of game servers.
A number of studies have considered distributed architectures:
Bharambe et al. [24] succeeded in scaling the Quake II engine over
many server nodes, supporting hundreds of players. A study by
Ploss et al. [25] parallelized the Quake III server using a purpose-
built scalable grid framework. A number of other studies ([3,4,6–
8]) have dealt with distributing game state across multiple nodes.

2.1. Optimizing a stand alone server

Practical considerations dictate that ad hoc servers are imple-
mented on stand-alone machines; however, relatively little work
has investigated the implementation, optimization, and bench-
marking of appropriate parallel architectures. As mentioned, Abd-
elkhalek et al. [9] analyzed the performance of the standard
sequential QuakeWorld server, empirically determining an approx-
imately linear relationship between processing overhead and the
number of players. They discussed the difficulty of meaningful
benchmarking: noting the functional similarity with online trans-
action processing, they propose the use of server throughput and
CPU idle time, as performance metrics.

In further work, Abdelkhalek and Bilas [26] implemented a par-
allel version of the QuakeWorld server. The response processing
and reply phases were processed by concurrent threads running
on separate cores of a quadcore CPU. Parallel execution was
achieved by assigning each player permanently to a specific
thread; however, memory synchronization was a limiting factor,
and the resolution of lock contentions represents up to 35% of total
execution time. An analysis showed that peak response occurs
with around 25% more players attached than the serial version,
which is a significant improvement. In this work, Abdelkhalek
and Bilas use only response rate and aggregated thread workload
to analyze performance: we will show in our experiments that
these alone are not sufficient to fully understand the behavior of

2 J. Munro et al. / Entertainment Computing 5 (2014) 1–17



Download English Version:

https://daneshyari.com/en/article/381921

Download Persian Version:

https://daneshyari.com/article/381921

Daneshyari.com

https://daneshyari.com/en/article/381921
https://daneshyari.com/article/381921
https://daneshyari.com

