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a b s t r a c t 

This paper presents a regularization method for program complexity control of linear genetic program- 

ming tuned for transcendental elementary functions. Our goal is to improve the performance of evolu- 

tionary methods when solving symbolic regression tasks involving Pfaffian functions such as polynomials, 

analytic algebraic and transcendental operations like sigmoid, inverse trigonometric and radial basis func- 

tions. We propose the use of straight line programs as the underlying structure for representing symbolic 

expressions. Our main result is a sharp upper bound for the Vapnik Chervonenkis dimension of families 

of straight line programs containing transcendental elementary functions. This bound leads to a penal- 

ization criterion for the mean square error based fitness function often used in genetic programming for 

solving inductive learning problems. Our experiments show that the new fitness function gives very good 

results when compared with classical statistical regularization methods (such as Akaike and Bayesian 

Information Criteria) in almost all studied situations, including some benchmark real-world regression 

problems. 

© 2016 Elsevier Ltd. All rights reserved. 

1. Introduction 

Inductive inference ( Angluin & Smith, 1983; Gori, Maggini, 

Martinelli, & Soda, 1998; Shaoning & Kasabov, 2004; Tenebaum, 

Griffiths, & Kemp, 2006 ) is one of the main fields in Machine 

Learning, and it can be defined as the process of hypothesizing 

a general rule from examples. The methods used in inductive 

inference span a variety of very different Machine Learning tools 

including neural networks, regression and decision trees, support 

vector machines, Bayesian networks, probabilistic finite state ma- 

chines and many other statistical techniques. Given a sample set 

of an unknown process, the problem of finding a model capable 

to predict correct values for new examples has applications in a 

diversity of fields such as economics, electronic design, game play- 

ing, physical processes, etc. When dealing with real-world prob- 

lems, the sample data are generally obtained through measures 

that are often corrupted by noise. In addition, the distribution ac- 

cording to which the examples are generated is usually unknown. 

This situation is very common when trying to solve inductive 

learning problems in the context of symbolic regression and must 
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be considered and modeled in its whole complexity to produce 

reasonable models. Symbolic regression can be understood as the 

problem of finding a mathematical formula that fits a set of data. 

For a long time symbolic regression was a human task, but the 

advent of computers facilitated the exploration of the huge search 

space in which the regression process usually takes place. Genetic 

Programming (GP) can be seen as a symbolic regression strategy 

by means of evolutionary algorithms. This idea was proposed 

by Koza to whom both the term and the concept are due (see 

Koza, 1992 ). 

In the last years, GP has been applied to a wide range of 

situations to solve both unsupervised and supervised learning 

problems, and it has become a powerful tool in the Knowl- 

edge Discovery and Data Mining domain (e.g., Freitas, 2002 ), 

including the emergent field of Big Data analysis (see Castelli, 

Vanneschi, Manzoni, & Popovi ̌c, 2015 ). Main subjects in unsu- 

pervised learning like clustering have been approached using GP 

(see Bezdek, Boggavarapu, Hall, & Bensaid, 1994; Falco, Tarantino, 

Cioppa, & Fontanella, 2004; Folino, Pizzuti, & Spezzano, 2008; Jie, 

Xinbo, & Li-cheng, 2003 ). Supervised classification by evolving 

selection rules is another avenue in which GP obtains a remark- 

able success as shown, for example, in Carreño, Leguizamón, 

and Wagner (2007) , Cano, Herrera, and Lozano (2007) , Chien, 

Yang, and Lin (2003) , Freitas (1997) , Hennessy, Madden, Conroy, 

and Ryder (2005) and Kuo, Hong, and Chen (2007) . Singular 
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applications to medicine and biology problems ( Aslam, Zhu, & 

Nandi, 2013; Bojarczuk, Lopes, & Freitas, 20 0 0; Bojarczuk, Lopes, 

Freitas, & Michalkiewicz, 2004; Castelli, Vanneschi, & Silva, 2014 ), 

feature extraction methods ( Krawiec, 2002; Smith & Bull, 2005 ), 

database clustering and rule extraction ( Wedashwara, Mabu, 

Obayashi, & Kuremoto, 2015 ), generation of hybrid multi-level 

predictors for function approximation and regression analysis 

( Tsakonas & Gabrys, 2012 ) are other examples in which GP is ap- 

plied. Specific applications to inductive learning problems solved 

via GP can be found in relatively old papers ( Okley, 1994; Poli & 

Cagnoni, 1997 ). 

The general procedure of GP consists in the evolution of a pop- 

ulation of computer programs, each of them computing a certain 

function, with the aim of finding one that best describes the tar- 

get function. These computer programs are build out from a set of 

functions and a set of terminals consisting of variables and con- 

stants. In the evolutionary process, the fitness function evaluates 

the goodness of each member of the population by measuring the 

empirical error over the sample set. In the presence of noise and 

to prevent other causes of overfitting (like, for example, the use of 

a very complex model), this fitness function must be regularized 

with some term that usually depends on the complexity of the 

model. Regularization is then a central problem related to gener- 

alization. By generalization we mean that the empirical error must 

converge to the expected true error when the number of examples 

increases. This notion of generalization defined here roughly agrees 

with the informal use of the term in GP (good performance over 

unseen examples) but captures the nature of the problem in the 

learning theory setting. The problem of generalization is focused 

for example in Tackett and Carmi (1994) and also in Cavaretta and 

Chellapilla (1999) . In Keijzer and Babovic (20 0 0) , ensembles meth- 

ods that can improve the generalization error in GP are discussed. 

The specific problem of regularization is extensively treated for 

polynomials in Nikolaev and Iba (2001) , Nikolaev, de Menezes, and 

Iba (2002) . Recent work regarding regularization used in GP can 

be found in Ni and Rockett (2015b) , where a vicinal risk regular- 

ization technique is explored. A detailed description of other GP- 

regularization strategies can be found in Ni and Rockett (2015a) , 

where Tikhonov regularization, in conjunction with node count as 

a general complexity measure in multiobjective GP, is proposed. 

Most work describing GP strategies for solving symbolic regres- 

sion problems employs trees as data structure for representing 

programs. There are other methodologies having an instruction- 

based approach, like that of matrix representation given in Li, 

Wang, Lee, and Leung (2008) or the more classical Cartesian Ge- 

netic Programming (CGP) of Miller and Thomson (20 0 0) . In this 

paper, we propose the use of straight line programs (SLPs) as 

data structure to evolve in GP. The SLP structure has a good per- 

formance when solving symbolic regression problem instances as 

shown in Alonso, Montana, and Puente (2008) . The main differ- 

ence between SLP GP and CGP consists in the implementation of 

the crossover operator, which in the case of SLPs is designed to 

interchange subgraphs, as described in Section 3 . While GP-trees 

are expression trees of formulas, the SLPs correspond to expres- 

sion dags (direct acyclic graphs) in which precomputed results can 

be reused. This makes the SLP data structure more compact and, 

usually, smaller than a tree, and consequently, easier to evaluate. 

Moreover, there is a canonical transformation mapping GP-trees 

onto SLPs (see Alonso, Montana, and Puente, 2009 for a detailed 

explanation of the relationships between SLPs and GP-trees). This 

transformation preserves the size and other complexity measures. 

For this reason, conclusions related to SLP performance can be ex- 

tended to GP-tree performance at least in the context of general- 

ization and regularization. 

This paper is primarily concerned with statistical regulariza- 

tion methods which can be applied to a wide family of models. 

In particular we study a complexity measure for families of data 

structures representing programs named Vapnik Chervonenkis di- 

mension (VCD). This measure, which belongs to the field of In- 

formation Theory, usually appears in conjunction with the Prob- 

ably Approximately Correct approach to supervised learning, com- 

monly referred to in the literature as the PAC model (see Vapnik, 

1998 and Vapnik & Chervonenkis, 1974 ). We consider families of 

SLPs constructed from a set of Pfaffian functions (solutions of trian- 

gular systems of first order partial differential equations with poly- 

nomial coefficients - the formal definition is given in Section 6 ). As 

important examples, polynomials, exponential functions, trigono- 

metric functions on some particular intervals and, in general, an- 

alytic algebraic functions are all Pfaffian. The main result of this 

paper is summarized in Theorem 1 , where an upper bound for the 

VCD of a family of SLPs using Pfaffian functions is found. This up- 

per bound is polynomial on some parameters, and in particular, on 

the non-scalar length of the SLPs. This implies that the length of 

the SLPs can be arbitrary if the excess is caused by addition and/or 

subtraction operations. Based on this result, we propose a method 

for selecting models in SLP GP for the case in which the admitted 

operations are all Pfaffian. In general, analyticity of the operators 

is a very desirable property in numerical computations, leading to 

more robust computer programs and providing a higher classifica- 

tion capacity. There are even well-founded proposals to replace the 

traditional protected division in GP by analytic operators, provid- 

ing much better experimental results as shown in Ni, Drieberg, and 

Rockett (2013) . This is another strong motivation for using Pfaffian 

operations. 

The paper is organized as follows. Section 2 contains some basic 

concepts concerning statistical regression, the model selection cri- 

teria used in this paper, along with the general definition of the 

VCD of a family of sets. In Section 3 we describe the SLP data 

structure, and we introduce, via a technical lemma, the concept of 

an universal SLP. Section 4 includes the main traits of the SLP GP 

paradigm. In Section 5 we provide basic definitions for the Pfaf- 

fian operators, and we present a summary of previous technical 

results that are used in the proof of our main theorem, which 

can be found in Section 6 . There, we give an upper bound for the 

VCD of families of SLPs that use as operators only Pfaffian func- 

tions. Section 7 shows the results of an extensive experimentation 

phase on a variety of symbolic regression problems. We also pro- 

vide a comparative analysis between our method and two other 

well-known statistical regularization strategies, in which the com- 

plexity of the models is estimated by the number of free parame- 

ters. Finally, Section 8 contains some conclusions and future work. 

2. Supervised learning and regression 

Genetic Programming can be seen as a direct evolution method 

of computer programs for inductive learning. Inductive GP can be 

considered as a specialization of GP, in that it uses the framework 

of the last one in order to solve inductive learning problems. These 

problems are, in general, searching problems, where the aim is to 

find the best model from a finite set of observed data. Note that 

the best model might not be the one that perfectly fits the data, 

since this could lead to overfitting and, consequently, to a poor 

performance on unseen instances. The idea is to look for a model 

that fits well the data set, being at the same time as simple as pos- 

sible. This immediately raises the question of how to measure the 

complexity of a model. There are many ways to do this. For exam- 

ple, we could prefer models with a small number of free parame- 

ters, which corresponds to simple mathematical formulas. Or, if the 

model is represented by a program, we could consider the length 

of the program as a complexity measure. Usually, for tree struc- 

tures, a measure of the complexity is the height or the width of 

the tree. There is no universal way of measuring the complexity of 
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