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a b s t r a c t 

In many real-world optimization problems, several conflicting objectives must be achieved and optimized 

simultaneously and the solutions are often required to satisfy certain restrictions or constraints. Moreover, 

in some applications, the numerical values of the objectives and constraints are obtained from compu- 

tationally expensive simulations. Many multi-objective optimization algorithms for continuous optimiza- 

tion have been proposed in the literature and some have been incorporated or used in conjunction with 

expert and intelligent systems. However, relatively few of these multi-objective algorithms handle con- 

straints, and even fewer, use surrogates to approximate the objective or constraint functions when these 

functions are computationally expensive. This paper proposes a surrogate-assisted evolution strategy (ES) 

that can be used for constrained multi-objective optimization of expensive black-box objective functions 

subject to expensive black-box inequality constraints. Such an algorithm can be incorporated into an in- 

telligent system that finds approximate Pareto optimal solutions to simulation-based constrained multi- 

objective optimization problems in various applications including engineering design optimization, pro- 

duction management and manufacturing. The main idea in the proposed algorithm is to generate a large 

number of trial offspring in each generation and use the surrogates to predict the objective and constraint 

function values of these trial offspring. Then the algorithm performs an approximate non-dominated sort 

of the trial offspring based on the predicted objective and constraint function values, and then it selects 

the most promising offspring (those with the smallest predicted ranks from the non-dominated sort) to 

become the actual offspring for the current generation that will be evaluated using the expensive ob- 

jective and constraint functions. The proposed method is implemented using cubic radial basis function 

(RBF) surrogate models to assist the ES. The resulting RBF-assisted ES is compared with the original ES 

and to NSGA-II on 20 test problems involving 2–15 decision variables, 2–5 objectives and up to 13 in- 

equality constraints. These problems include well-known benchmark problems and application problems 

in manufacturing and robotics. The numerical results showed that the RBF-assisted ES generally outper- 

formed the original ES and NSGA-II on the problems used when the computational budget is relatively 

limited. These results suggest that the proposed surrogate-assisted ES is promising for computationally 

expensive constrained multi-objective optimization. 

© 2016 Elsevier Ltd. All rights reserved. 

1. Introduction 

Multi-objective optimization techniques have been successfully 

applied in many real-world decision problems. In general, a deci- 

sion maker can make better decisions when multiple, possibly con- 

flicting, goals or objectives are taken into account. In this situation, 

there are usually many, sometimes infinitely many, “optimal” so- 

lutions that are incomparable, referred to as Pareto optimal solu- 

tions . These Pareto optimal solutions obtained by a multi-objective 
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optimization algorithm yield a trade-off curve or trade-off surface 

called the Pareto front where finding a solution that improves one 

objective potentially causes the deterioration of another objective. 

Hence, this trade-off surface shows how much a decision maker 

has to sacrifice in one objective if he or she wants to improve an- 

other objective. The goal of some multi-objective optimization ap- 

proaches is to find all Pareto optimal solutions or at least find a 

representative subset of these solutions. 

In this article, we develop a surrogate-assisted evolution strat- 

egy (ES) for constrained multi-objective optimization that can be 

used for problems with computationally expensive objective and 

constraint functions. Our problem setting is that the values of the 
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objective functions and constraint functions for a given input vec- 

tor are obtained via a time-consuming simulation that could take 

several seconds to many hours per simulation. Such problems are 

found in many engineering applications, including those that in- 

volve finite element or computational fluid dynamics simulations 

(e.g., Bureerat & Srisomporn, 2010; Husain, Lee, & Kim, 2011; Ku- 

nakote & Bureerat, 2011 ), and also simulation-based problems in 

production planning and manufacturing (e.g., Gansterer, Almeder, 

& Hartl, 2014; Güller, Uygun, & Noche, 2015 ). Many multi-objective 

optimization algorithms have been proposed in the literature and 

some have been incorporated or used in conjunction with expert 

and intelligent systems in manufacturing and engineering design 

applications (e.g., Kasperska & Ostwald, 2006; Lee & Kim, 1996; Re- 

dondo, Sedano, Vera, Hernando, & Corchado, 2013 ). Our proposed 

approach extends the capability of multi-objective optimization al- 

gorithms in these intelligent systems to handle constraints and 

computationally expensive simulation-based problems. 

Our focus is on solving constrained multi-objective optimization 

problems of the following form: 

min F (x ) = ( f 1 (x ) , . . . , f k (x )) 
s.t. 

G (x ) = (g 1 (x ) , . . . , g m 

(x )) ≤ 0 

� ≤ x ≤ u 

(1) 

Here, f i : R 

d → R , i = 1 , . . . , k and g j : R 

d −→ R , j = 1 , . . . , m are 

black-box functions whose values are obtained via an expen- 

sive but deterministic simulation. For now, we assume that there 

are no equality constraints and that the feasible region D := {
x ∈ R 

d : � ≤ x ≤ u, G (x ) ≤ 0 
}

has a nonempty interior. Through- 

out the paper, we assume that one simulation for a given input 

vector x ∈ [ � , u ] for problem (1) yields the values of all the com- 

ponents of the vector-valued functions F ( x ) and G ( x ). 

When function evaluations are computationally expensive, a 

natural approach is to employ surrogate models or metamodels for 

the expensive functions (e.g., Forrester, Sobester, & Keane, 2008 ). 

Commonly used surrogate modeling techniques include polynomial 

regression (particularly, linear and quadratic models), kriging inter- 

polation, radial basis function (RBF) interpolation, neural networks, 

and support vector regression. In addition, many authors have pro- 

posed ensembles of various types of surrogate models to improve 

the predictive capabilities of the overall approximation model (e.g., 

Acar, 2015 ). 

Surrogate models have been combined with evolutionary algo- 

rithms for computationally expensive single-objective optimization 

problems (e.g., Andrés, Salcedo-Sanz, Monge, and Pérez-Bellido, 

2012; Bhattacharya, 2007; Regis and Shoemaker, 2004; Shi and 

Rasheed, 2008 ) and also for multi-objective optimization prob- 

lems (e.g., Akhtar & Shoemaker, 2016; Isaacs, Ray, & Smith, 2009; 

Kanyakam & Bureerat, 2012; Knowles & Nakayama, 2008; Liu & 

Sun, 2013; Ray & Smith, 2006 ). Moreover, several authors (e.g., 

Couckuyt, Deschrijver, & Dhaene, 2014; Knowles, 2006; Ponweiser, 

Wagner, Biermann, & Vincze, 2008; Wagner, Emmerich, Deutz, 

& Ponweiser, 2010; Zhang, Liu, Tsang, & Virginas, 2010 ) devel- 

oped kriging-based methods that are extensions of the Efficient 

Global Optimization (EGO) method by Jones, Schonlau, and Welch 

(1998) to multi-objective optimization. EGO is a global optimiza- 

tion method that uses kriging models together with an expected 

improvement criterion to select its iterates. 

This paper proposes a multi-objective optimization approach 

based on an evolutionary algorithm that is assisted by surrogate 

models. Evolutionary algorithms simulate the process of evolution 

and natural selection by maintaining a population of solutions that 

are modified in each iteration (called a generation ) using recombi- 

nation and mutation operators. In this study, we used an evolution 

strategy, which is a particular type of evolutionary algorithm that 

evolves not just a population of solutions but also the associated 

parameters that control the generation of new solutions. More- 

over, our proposed algorithm is based on an evolution strategy that 

only uses a mutation operator as will be explained later. However, 

there are other approaches for multi-objective optimization. Be- 

sides evolutionary algorithms such as NSGA-II, swarm intelligence 

algorithms such as MOPSO ( Coello, Pulido, & Lechuga, 2004 ) are 

also popular. Swarm algorithms also maintain a population of so- 

lutions that simulate the behavior of a swarm of agents or particles 

as they collectively attempt to find an optimal state. Finally, there 

are also direct search methods and trust region methods that have 

been recently proposed for multi-objective optimization. 

Our approach to solving problem (1) is to use a surrogate to 

assist an evolution strategy and enhance its performance on con- 

strained multi-objective optimization problems. Although numer- 

ous multi-objective evolutionary algorithms have been proposed in 

the literature ( Deb, Agrawal, Pratap, & Meyarivan, 2002; Knowles 

& Corne, 20 0 0; Zhang & Li, 20 07; Zitzler & Thiele, 1998 ), relatively 

few have directly dealt with black-box constraints without using a 

penalty. Moreover, although surrogate models have been combined 

with evolutionary algorithms for computationally expensive opti- 

mization problems, most implementations use surrogates only for 

a single objective function. Relatively few methods use surrogates 

for multiple constraint functions (e.g., Regis, 2014 ) or for multi- 

ple objectives (e.g., Akhtar & Shoemaker, 2016; Isaacs et al., 2009; 

Kanyakam & Bureerat, 2012; Knowles & Nakayama, 2008; Ray & 

Smith, 2006 ). Even fewer methods use surrogates to approximate 

both the objective functions and constraint functions in a multi- 

objective setting (e.g., Emmerich, Giannakoglou, & Naujoks, 2006; 

Singh, Couckuyt, Ferranti, & Dhaene, 2014 ). Hence, the method we 

propose, which uses surrogates to approximate the objective func- 

tions and constraint functions in a multi-objective setting is still 

somewhat rare. 

The main idea in our proposed surrogate-assisted multi- 

objective evolution strategy (SMES) is to generate a large num- 

ber of trial offspring in every generation, use surrogates for the 

objectives and constraints to estimate the actual objective and 

constraint function values from the expensive simulations, and 

then use a non-dominated sorting procedure to identify the most 

promising trial offspring solutions, which then become the actual 

offspring solutions where the expensive simulations will be car- 

ried out. Our method attempts to get a good approximation of 

the Pareto set using only a relatively limited number of function 

evaluations, i.e., hundreds or a few thousands evaluations rather 

than hundreds of thousands of evaluations commonly used with 

standard evolutionary algorithms. Our method substantially ex- 

tends the surrogate-assisted ES by Regis and Shoemaker (2004) , 

which was designed for single-objective problems with no black- 

box constraints. Moreover, we use surrogates to approximate ex- 

pensive black-box inequality constraints as in the evolutionary pro- 

gramming (EP) algorithm in Regis (2014) . In the numerical exper- 

iments, we use radial basis function (RBF) surrogates in the SMES 

method and apply the resulting algorithm to 20 test problems, in- 

cluding four well-known benchmark problems, three instances of a 

robotics application problem, and two manufacturing problems. To 

assess performance, we compare our method with an ordinary ES 

for constrained multi-objective optimization and with NSGA-II on 

the same problems and using the same initial conditions. The re- 

sults showed that the proposed RBF-assisted SMES is very promis- 

ing for computationally expensive constrained multi-objective op- 

timization problems. 

The SMES approach differs from Emmerich et al. (2006) and 

Singh et al. (2014) in that it can be used with any type of sur- 

rogate model while these other methods use a kriging metamodel 

in conjunction with the multi-objective Probability of Improvement 

(PoI) criterion. Moreover, the method proposed by Singh et al. 

(2014) is a non-evolutionary method that uses a Probability of 
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