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In data mining, regression analysis is a computational tool that predicts continuous output variables from a

number of independent input variables, by approximating their complex inner relationship. A large number

of methods have been successfully proposed, based on various methodologies, including linear regression,

support vector regression, neural network, piece-wise regression, etc. In terms of piece-wise regression, the

existing methods in literature are usually restricted to problems of very small scale, due to their inherent

non-linear nature. In this work, a more efficient piece-wise linear regression method is introduced based on a

novel integer linear programming formulation. The proposed method partitions one input variable into multi-

ple mutually exclusive segments, and fits one multivariate linear regression function per segment to minimise

the total absolute error. Assuming both the single partition feature and the number of regions are known, the

mixed integer linear model is proposed to simultaneously determine the locations of multiple break-points

and regression coefficients for each segment. Furthermore, an efficient heuristic procedure is presented to

identify the key partition feature and final number of break-points. 7 real world problems covering several

application domains have been used to demonstrate the efficiency of our proposed method. It is shown that

our proposed piece-wise regression method can be solved to global optimality for datasets of thousands

samples, which also consistently achieves higher prediction accuracy than a number of state-of-the-art re-

gression methods. Another advantage of the proposed method is that the learned model can be conveniently

expressed as a small number of if-then rules that are easily interpretable. Overall, this work proposes an

efficient rule-based multivariate regression method based on piece-wise functions and achieves better pre-

diction performance than state-of-the-arts approaches. This novel method can benefit expert systems in var-

ious applications by automatically acquiring knowledge from databases to improve the quality of knowledge

base.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

In data mining, regression is a type of analysis that predicts

continuous output/response variables from several independent

input variables. Given a number of samples, each one of which is

characterised by certain input and output variables, regression anal-

ysis aims to approximate their functional relationship. The estimated

functional relationship can then be used to predict the value of out-

put variable for new enquiry samples. Generally, regression analysis

can be useful under two circumstances: (1) when the process of in-

terest is a black-box, i.e. there is limited knowledge of the underlying

mechanism of the system. In this case, regression analysis can accu-

rately predict the output variables from the relevant input variables
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without requiring details of the however complicated inner mech-

anism (Bai, Wang, Li, Xie, & Wang, 2014; Cortez, Cerdeira, Almeida,

Matos, & Reis, 2009; Davis & Ierapetritou, 2008; Venkatesh, Ravi,

Prinzie, & den Poel, 2014). Quite frequently, the user would also like

to gain some valuable insights into the true underlying functional re-

lationship, which means the interpretability of a regression method

is also of importance, (2) when the detailed simulation model

relating input variables to output variables, usually via some other

intermediate variables, is known, yet is too complex and expensive

to be evaluated comprehensively in feasible computational time. In

this case, regression analysis is capable of approximating the overall

system behaviour with much simpler functions while preserving

a desired level of accuracy, and can then be more cheaply evalu-

ated (Beck, Friedrich, Brandani, Guillas, & Fraga, 2012; Caballero &

Grossmann, 2008; Henao & Maravelias, 2010; 2011; Viana, Simpson,

Balabanov, & Toropov, 2014).

Over the past years, regression analysis has been established as

a powerful tool in a wide range of applications, including: customer
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demand forecasting (Kone & Karwan, 2011; Levis & Papageorgiou,

2005), investigation of CO2 capture process (Nuchitprasittichai &

Cremaschi, 2013; Zhang & Sahinidis, 2013), optimisation of moving

bed chromatography (Li, Feng, P., & Seidel-Morgenstern, 2014b), fore-

casting of CO2 emission (Pan, Kung, Bretholt, & Lu, 2014), prediction

of acidity constants for aromatic acids (Ghasemi, Saaidpour, & Brown,

2007), prediction of induction of apoptosis by different chemical

components (Afantitis et al., 2006) and estimation of thermodynamic

property of ionic liquids (Chen, Wu, & He, 2014; Wu, Chen, & He,

2014).

A large number of regression analysis methodologies exist

in the literature, including: linear regression, support vector re-

gression (SVR), kriging, radial basis function (RBF) (Sarimveis,

Alexandridis, Mazarakis, & Bafas, 2004), multivariate adaptive regres-

sion splines (MARS), multilayer perceptron (MLP), random forest, K-

nearest neighbour (KNN) and piecewise regressions. We briefly sum-

marise those methodologies before presenting our proposed method.

Linear regression

Linear regression is one of the most classic types of regression

analysis, which predicts the output variables as linear combinations

of the input variables. The regression coefficients of the input vari-

ables are usually estimated using least squared error or least absolute

error approaches. The problems can be formulated as either quadratic

programming or linear programming problems, which can be solved

efficiently. In some cases when the estimated linear relationship fails

to adequately describe the data, a variant of linear regression anal-

ysis, called polynomial regression, can be adopted to accommodate

non-linearity (Khuri & Mukhopadhyay, 2010). In polynomial regres-

sion, higher degree polynomials of the original independent input

variables are added as new input variables, before estimating the co-

efficients of the aggregated regression function. Polynomial functions

of second-degree have been most frequently used in literature due

to its robust performance and computational efficiency (Khayet, Co-

jocaru, & Zakrzewska-Trznadel, 2008; Minjares-Fuentes et al., 2014).

Another popular variant of linear regression is called least ab-

solute shrinkage and selection operator (LASSO) (Tibshirani, 1994).

In LASSO, summation of absolute values of regression coefficients is

added as a penalty term into the objective function. The nature of

LASSO encourages some coefficients to equal to 0, thus performing

implicit feature selection (Tibshirani, 2011).

Automated learning of algebraic models for optimisation

(ALAMO) (Cozad, Sahinidis, & Miller, 2014; Zhang & Sahinidis,

2013) is a mathematical programming-based regression method that

proposes low-complexity functions to predict output variables. Given

the independent input features, ALAMO starts with defining a large

set of potential basis functions, such as polynomial, multinomial,

exponential and logarithmic forms of the original input variables.

Subsequently an mixed integer linear programming model (MILP) is

solved to select the best subset of T basis functions that optimally fit

the data. The value of T is initially set equal to 1 and then iteratively

increased until the Akaike information criterion, which estimates the

generalisation of the constructed model, starts to decrease (Miller

et al., 2014). The integer programming model is capable of capturing

the synthetic effect of different basis functions, which is considered

more efficient than traditional step-wise feature selection.

SVR

Support vector machine is a very established statistical learning

algorithm, which fits a hyper plane to the data (Smola & Schlkopf,

2004). SVR minimises two terms in the objective function, one

of which is ε-insensitive loss function, i.e. only sample training

error greater than an user-specific threshold, ε, is considered in

the loss function. The other term is model complexity, which is

expressed as sum of squared regression coefficients. Controlling

model complexity usually ensures the model generalisation, i.e.

high prediction accuracy in testing samples. Another user-specified

trade-off parameter balances the significance of the two terms

(Bermolen & Rossi, 2009; Chang & Lin, 2011). One of the most im-

portant features that contribute to the competitiveness of SVR is the

kernel trick. Kernel trick maps the dataset from the original space to

higher-dimensional inner product space, at where a linear regression

is equivalent to an non-linear regression function in the original

space (Li, Gong, & Liddell, 2000). A number of kernel functions

can be employed, e.g. polynomial function, radial basis function

and fourier series (Levis & Papageorgiou, 2005). Formulated as a

convex quadratic programming problem, SVR can be solved to global

optimality.

Despite the simplicity and optimality of SVR, the problem of tun-

ing two parameters, i.e. training error tolerance ε and trade-off pa-

rameter balancing model complexity and accuracy, and selection of

suitable kernels still considerably affect its performance accuracy

(Cherkassky & Ma, 2004; Lu, Lee, & Chiu, 2009).

Kriging

Kriging is a spatial interpolation-based regression analysis

methodology (Kleijnen & Beers, 2004). Given a query sample, kriging

estimates its output as a weighted sum of the outputs of the known

nearby samples. The weights of samples are computed solely from

the data by considering sample closeness and redundancy, instead of

being given by an arbitrary decreasing function of distance (Kleijnen,

2009). The interpolation nature of kriging means that the derived in-

terpolant passes through the given training data points, i.e. the er-

ror between predicted output and real output is zero for all training

samples. Different variants of kriging have been developed in litera-

ture, including the most popular ordinary kriging (Lloyd & Atkinson,

2002; Zhu & Lin, 2010) and universal kriging (Brus & Heuvelink, 2007;

Sampson et al., 2013).

MARS

MARS (Friedman, 1991) is another type of regression analysis that

accommodates non-linearity and interaction between independent

input variables in its functional relationship. Non-linearity is intro-

duced into MARS in the form of the so-called hinge functions, which

are expressions with max operators and look like max(0, X − const).

If independent variable X is greater than a constant number const,

the hinge function is equal to X-const, otherwise the hinge function

equals to 0. The hinge functions create knots in the prediction sur-

face of MARS. The functional form of MARS can be a weighted sum

of constant, hinge functions and products of multiple hinge func-

tions, which makes it suitable to model a wide range of non-linearity

(Andrs, Lorca, de Cos Juez, & Snchez-Lasheras, 2011).

The building of MARS usually consists of two steps, a forward ad-

dition and a backward deletion step. In the forward addition step,

MARS starts from one single intercept term and iteratively adds pairs

of hinge functions (i.e. max(0, X − const) and max(0, const − X)) that

leads to largest reduction in training error. Afterwards, a backward

deletion step, which removes one by one those hinge functions con-

tributing insignificantly to the model accuracy, is employed to im-

prove generalisation of the final model (Balshi et al., 2009; Leathwick,

Elith, & Hastie, 2006). The presence of hinge functions also make

MARS a piece-wise regression method.

MLP

Multilayer perceptron is a feedforward artificial neural network,

whose structure is inspired by the organisations of biological neural

networks (Hill, Marquez, O’Connor, & Remus, 1994). A MLP typically

consists of an input layer of input variables, an output layer of

response variables, sandwiching multiple intermediate layers of neu-

rons. The network is fully interconnected in the sense that neurons

in each layer are connected to all the neurons in the two neighbour

layers (Comrie, 1997; Gevrey, Dimopoulos, & Lek, 2003). Each neuron

in the intermediate layers takes a weighted linear combination of

outputs from all neurons in the previous layer as input, applies an

non-linear transformation function before supplying the output to

all neurons of the next layer. The use of non-linear transformation

functions, including sigmoid, hyperbolic tangent and logarithmic
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