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a b s t r a c t

Meso-scale forecasts result from global numerical weather prediction models, which are based upon the

differential equations for atmospheric dynamics that do not perfectly determine weather conditions near

the ground. Statistical corrections can combine complex numerical models, based on the physics of the at-

mosphere to forecast the large-scale weather patterns, and regression in post-processing to clarify surface

weather details according to local observations and climatological conditions. Neural networks trained with

local relevant weather observations of fluctuant data relations in current conditions, entered by numerical

model outcomes of the same data types, may revise its one target short-term prognosis (e.g. relative hu-

midity or temperature) to stand for these methods. Polynomial neural networks can compose general partial

differential equations, which allow model more complicated real system functions from discrete time-series

observations than using standard soft-computing methods. This new neural network technique generates

convergent series of substitution relative derivative terms, which combination sum can define and solve an

unknown general partial differential equation, able to describe dynamic processes of the weather system in

a local area, analogous to the differential equation systems of numerical models. The trained network model

revises hourly-series of numerical prognosis of one target variable in sequence, applying the general differ-

ential equation solution of the correction multi-variable function to corresponding output variables of the

24-hour numerical forecast. The experimental results proved this polynomial network type can successfully

revise some numerical weather prognoses after this manner.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Meso-scale meteorological models need as a rule to be forced by

robust global numerical forecasts, which involve a large number of

3D matrix variables in several atmospheric layers, provided by lateral

boundary conditions. Post-processing methods using local measure-

ments can improve some numerical weather prediction (NWP) model

outputs; these techniques are called model output statistics (MOS)

(Klein & Glahn, 1974). Generally numerical weather models, using

physical and meteorological considerations, succeed in forecasting

upper air patterns but are too crude to account for local variations

in surface weather. Pure statistical models on the other hand, which

employ only time-series data and predict future values by taking past

history into account, are excellent at forecasting idiosyncrasies in lo-

cal weather but are usually worthless beyond about six hours. The

numerical (physical) methods have advantages in long-term predic-

tion, while the statistical methods do well in short-term forecasts.

The MOS search statistical relations between the forecast meteoro-
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logical fields and the observed parameters, thus it combines two pro-

cedures: complex numerical forecasts based on the physics of the

atmosphere modeling the large-scale weather patterns and regres-

sion equations in statistical post-processing to clarify surface weather

details (Vannitsem, 2008). The MOS takes into account local defects

and biases (systematic errors) of the deterministic model, which may

arise for many reasons including the inability to account for physical

processes at a scale smaller than the grid used in the numerical so-

lution of the model equations. The objective of bias corrections is to

minimize the systematic errors of the next forecast using bias from

past errors, which result from many sources in NWP modeling sys-

tems, e.g. the physical parameterization of weather events. The lo-

cal adaptation of weather forecasts may be done by means of “Per-

fect prog” method, which determines statistical relations between

grid point values of meteorological field analyses and observations.

Kalman filtering is used to recalculate the mean values and variances

of the regression coefficients for the forecast parameters obtained

by linear regression taking into account the differences between

the parameter last predicted and observed values (Coiffier, 2011).

Other statistical algorithms used for minimizing the bias of the next

forecast may apply “Running-mean” bias corrections and the “Near-

est neighborhood weighted mean” (Durai & Bhradwaj, 2014). The
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hybrid models use additional input data, starting from a given global

forecast model, which does not include local characteristics. Two dif-

ferent down-scaling methods using an unbiased observing system

(independent from the NWP model to prevent its drift) and meso-

scale model, which results from the global prediction system, may be

considered. A physical down-scaling applies additional satellite at-

mospheric measurements (Cucurull, Anthes, & Tsao, 2014) while the

statistical down-scaling uses only independent surface data observa-

tions, e.g. Bayesian hierarchical approach can combine information

from short and long observational records (Nott, Dunsmuir, Kohn, &

Woodcock, 2001).

Further correction methods were developed to estimate and elim-

inate global weather system model errors, induced due to uncer-

tain initial conditions, data and computational limitations (Danforth,

Kalnay, & Miyoshi, 2007). The “Variational” method, based on pre-

vious numerical forecasts, estimates a non-systematic component of

numerical forecast error. This method assumes the component is lin-

early dependent on some combination of the initial fields, end time

forecasts and the forecast tendency, which can identify the forecast-

ing error (Shao, Xi, & Qiu, 2009). The NWP model error can be ex-

pressed solving the inverse problem of the Lagrange interpolation

polynomial, which coefficients are determined by past model per-

formance. The length of past multi-time data observations sufficient

for the optimal error estimation together with numerical model out-

puts and observation errors determine the method accuracy (Xue,

Shen, & Chou, 2013). The probabilities of certain weather events (pre-

cipitation), which occur in a local area is possible to estimate in a

“germ–grain” model using non-negative least-squares approach to

determine the local rain-fall intensities and a “semi-variogram” esti-

mation technique to find the grain (cell) size (Kriesche, Hess, Reichert,

& Schmidt, 2015). The proposed correction method (Section 5) does

not search relations between observed and forecasted values or some

other variables of the NWP model to describe its systematic or initial

output errors but it forms a general differential equation model of the

changeable up-to-date function of some relevant meteorological vari-

ables from the observations, which feature the current local weather

specific condition, valid for the NWP model outcomes that enter the

correction model to recalculate (revise) one target prognosis series.

Neural networks, trained for local fluctuating weather data relations

of some few past days, can apply the same NWP output types instead

of the real values (which are not known yet) to stand for the men-

tioned statistical local adaptations in the majority of cases.

Artificial neural networks (ANN) are able to model the non-linear

nature of dynamic processes and reproduce an empirical relationship

between some inputs and one or more outputs. A common ANN op-

erating principle is based on learned entire similarity relationships

between new presented input patterns and the trained ones. It does

not allow for eventual direct elementary data relations, which multi-

variable low-order polynomial functions can easy describe (Nikolaev

& Iba, 2006). Differential equations can model to advantage physi-

cal or natural dynamic systems, which can be hardly or only with

difficulties described by means of unique explicit functions; the so-

lutions can apply power (Balser, 2004) or wave series (Chaquet &

Carmona, 2012) and ANN structure to substitute for predetermined

differential equations (He, Reif, & Unbehauen, 2000; Jianyu, Siwei,

Yingjian, & Yaping, 2003). Extended polynomial networks may apply

some mathematical principles to define and solve general differential

equations. It is possible to express a general connection between in-

put and output variables by means of the Volterra functional series,

a discrete analogue of which is the Kolmogorov–Gabor polynomial

(1).
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Group Method of Data Handling (GMDH) was created by a

Ukrainian scientist Aleksey Ivakhnenko in 1968, when the back-

propagation technique was not known yet. It forms a multi-layer

polynomial neural network (PNN) in successive steps, adding one

layer a time, which decomposes the complexity of the process, ex-

pressed by the Kolmogorov–Gabor polynomial, into many simpler

relationships, each described by the low order polynomial transfer

function (2) for every pair of the input values xi, xj (Ivakhnenko,

1971).

y = a0 + a1xi + a2x j + a3xix j + a4x2
j + a5x2

j (2)

Differential polynomial neural network (D-PNN) is a new neural

network type, designed by the author, which extends the basic

GMDH-PNN structure; however its operating and constructing

principles differ from those of the GMDH, based on Taylor-series

expansions. D-PNN generates convergent sum series of relative

polynomial derivative terms, which together form and substitute for

an unknown general partial differential equation (DE) solution of

the approximation of a complex function, described by data observa-

tions. The derivative series model is in principle quite different from

direct composing computational techniques, which use a collection

of operators and terminals of a predefined set to form symbolic

tree-like structural expressions. The genetic programming can solve

explicit DE forms (Cornforth & Lipson, 2013) or a pre-defined general

DE system (Iba, 2008) after this manner. The D-PNN can combine

the PNN functionality with some mathematical principles of DE

substitutions. Its models lie on the boundary of neural networks and

exact computational techniques. The D-PNN relative data processing

is based on the derivative polynomial generalization of data relations

in a searched function model, which composite selective series de-

scriptions facilitate a much larger variety of model forms than usual

and that allow apply a wider range of test input or output values than

defined by a training data set (Zjavka, 2013a). The general partial

DE is decomposed into a multi-layer network structure to produce

substitution sum series for the derivative model, the exact solution

of which is problematic or impossible to get using direct composing

techniques or the DE explicit form is unknown (Zjavka, 2013a).

2. General partial differential equation composition

D-PNN forms and solves the general partial DE (3), in which an

exact definition is not known in advance and which can generally

describe a system model using summation derivative terms. The

searched function u may be expressed in the form of sum series (4),

consisting of series arising from derivative sum convergent term se-

ries (5) in the case of 2 input variables. The study substitutes the gen-

eral partial DE (3) with multi-variable polynomial fraction terms (8),

which can describe partial relative derivative changes of some input

variables combinations in a sum series solution. The simple form of

an unknown searched u function is possible to calculate from the gen-

eral DE (3) as the sum of the rest of the derivative terms, i.e. its partial

derivatives (4).
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